An MRI method for measuring T2 in the presence of static and RF magnetic field inhomogeneities. 1997

D A Yablonskiy, and E M Haacke
Mallinckrodt Institute of Radiology, Washington University Medical School, St Louis, Missouri 63110, USA.

A magnetic resonance imaging method for measuring the T2 relaxation time constant is proposed. It is based on the assumption that, under very general conditions, the MR signal near a spin echo has a special symmetry arising from the refocusing nature of the 180 degrees RF pulse. A gradient echo sampling of the spin echo (GESSE) sequence is implemented to evaluate T2 by collecting multiple gradient echoes before and after the spin echo. This approach is a modification of the GESFIDE sequence proposed by Ma and Wehrli. However, our approach compares images that are not separated by any RF pulses and, as a result, is insensitive to slice profile imperfections. In addition, the calculated T2 value does not rely on any special assumptions about the MRI signal behavior in the presence of an inhomogeneous static magnetic field and, hence, is insensitive to the presence of static magnetic field inhomogeneities.

UI MeSH Term Description Entries
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

D A Yablonskiy, and E M Haacke
February 2018, Zeitschrift fur medizinische Physik,
D A Yablonskiy, and E M Haacke
June 2005, Journal of magnetic resonance (San Diego, Calif. : 1997),
D A Yablonskiy, and E M Haacke
February 2003, IEEE transactions on medical imaging,
D A Yablonskiy, and E M Haacke
April 1995, Magnetic resonance in medicine,
D A Yablonskiy, and E M Haacke
January 1992, IEEE transactions on medical imaging,
D A Yablonskiy, and E M Haacke
October 1995, Medical physics,
D A Yablonskiy, and E M Haacke
May 2001, Zhongguo yi liao qi xie za zhi = Chinese journal of medical instrumentation,
D A Yablonskiy, and E M Haacke
October 2009, Journal of magnetic resonance (San Diego, Calif. : 1997),
Copied contents to your clipboard!