The protective effect of 2-chloroadenosine against the development of amygdala kindling and on amygdala-kindled seizures. 1997

A S Abdul-Ghani, and P J Attwell, and H F Bradford
Department of Biology and Biochemistry, Birzeit University, West-Bank, Israel.

The influence of 2-chloroadenosine, a non-metabolizable adenosine A1 receptor agonist, was tested on the development of electrically kindled amygdala and on the seizure responses of fully kindled rats. Focal intra-amygdaloid injection of 2-chloroadenosine (1-10 nmol/0.5 microl) 20 min before applying the daily kindling stimulus prevented the development of the kindling process. The behavioural seizure score and the afterdischarge duration were reduced below their initial values. The antiepileptogenic effects of 1 and 10 nmol of 2-chloroadenosine were reversible 8-10 days after withdrawal of the drug. When 2-chloroadenosine was tested on fully developed stage 5 amygdala-kindled seizures, it increased the generalised seizure threshold in a dose-dependent manner. A maximum efficiency of 125% (P < 0.001) was achieved with 5 nmol and the median effective dose was 0.55 nmol. Higher doses resulted in the reduced anticonvulsant effect (P < 0.05). With the same daily stimulation, 2-chloroadenosine 5 nmol in 0.5 microl vehicle, significantly reduced the maximum seizure score by 90%, the afterdischarge duration by 88% and completely blocked the generalised seizure duration. The antiseizure activity of the drug lasted for 3 days. In conclusion, 2-chloroadenosine not only acts as an anticonvulsant against electrically induced kindled seizures as described here, and against audiogenic seizures, electroshock and a variety of chemical convulsants as described by others, it prevents the development of the epileptic state by kindling-stimulation, i.e., it is antiepileptogenic. We theorise here that this is due to its blockade of presynaptic glutamate release.

UI MeSH Term Description Entries
D007267 Injections Introduction of substances into the body using a needle and syringe. Injectables,Injectable,Injection
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000927 Anticonvulsants Drugs used to prevent SEIZURES or reduce their severity. Anticonvulsant,Anticonvulsant Drug,Anticonvulsive Agent,Anticonvulsive Drug,Antiepileptic,Antiepileptic Agent,Antiepileptic Agents,Antiepileptic Drug,Anticonvulsant Drugs,Anticonvulsive Agents,Anticonvulsive Drugs,Antiepileptic Drugs,Antiepileptics,Agent, Anticonvulsive,Agent, Antiepileptic,Agents, Anticonvulsive,Agents, Antiepileptic,Drug, Anticonvulsant,Drug, Anticonvulsive,Drug, Antiepileptic,Drugs, Anticonvulsant,Drugs, Anticonvulsive,Drugs, Antiepileptic
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

A S Abdul-Ghani, and P J Attwell, and H F Bradford
November 1997, Brain research,
A S Abdul-Ghani, and P J Attwell, and H F Bradford
January 1994, Epilepsia,
A S Abdul-Ghani, and P J Attwell, and H F Bradford
March 2002, Neuroscience letters,
A S Abdul-Ghani, and P J Attwell, and H F Bradford
April 2012, Journal of Huazhong University of Science and Technology. Medical sciences = Hua zhong ke ji da xue xue bao. Yi xue Ying De wen ban = Huazhong keji daxue xuebao. Yixue Yingdewen ban,
A S Abdul-Ghani, and P J Attwell, and H F Bradford
October 1985, Archives internationales de pharmacodynamie et de therapie,
A S Abdul-Ghani, and P J Attwell, and H F Bradford
January 1998, Polish journal of pharmacology,
A S Abdul-Ghani, and P J Attwell, and H F Bradford
December 2003, Epilepsy research,
A S Abdul-Ghani, and P J Attwell, and H F Bradford
February 1985, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!