A mathematical model of sialylation of N-linked oligosaccharides in the trans-Golgi network. 1997

T J Monica, and D C Andersen, and C F Goochee
Department of Chemical Engineering, Stanford University, CA 94305, USA.

A mathematical model is developed of the compartmentalized sialylation of N-linked oligosaccharides in order to understand and predict the outcome of sialylation reactions. A set of assumptions are presented, including Michaelis-Menten-type dependency of reaction rate on the concentration of the glycoprotein substrate. The resulting model predicts the heterogeneous outcome of a posttranslational oligosaccharide biosynthesis step, a critical aspect that is not accounted for in the modeling of the cotranslational attachment of oligosaccharides to glycosylation sites (Shelikoff et al., Biotech. Bioeng., 50, 73-90, 1996) or general models of the secretion process (Noe and Delenick, J. Cell Sci., 92, 449-459, 1989). In the steady-state for the likely case where the concentration of substrate is much less than the Km of the sialyltransferase, the model predicts that the extent of sialylation, x, will depend upon the enzyme concentration, enzyme kinetic parameters and substrate residence time in the reaction compartment. The value of x predicted by the model using available literature data is consistent with the values of x that have been recently determined for the glycoproteins CD4 (Spellman et al., Biochemistry, 30, 2395-2406, 1991) and t-PA (Spellman et al., J. Biol. Chem., 264, 14100-14111, 1989) secreted by Chinese hamster ovary cells. For the unsaturated case, the model also predicts that x is independent of the concentration of secreted glycoprotein in the Golgi. The general modeling approach outlined in this article may be applicable to other glycosylation reactions and posttranslational modifications.

UI MeSH Term Description Entries
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D002236 Carbohydrate Conformation The characteristic 3-dimensional shape of a carbohydrate. Carbohydrate Linkage,Carbohydrate Conformations,Carbohydrate Linkages,Conformation, Carbohydrate,Conformations, Carbohydrate,Linkage, Carbohydrate,Linkages, Carbohydrate
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

T J Monica, and D C Andersen, and C F Goochee
December 2005, Biotechnology and bioengineering,
T J Monica, and D C Andersen, and C F Goochee
July 1992, Antiviral research,
T J Monica, and D C Andersen, and C F Goochee
September 1997, Biotechnology and bioengineering,
T J Monica, and D C Andersen, and C F Goochee
September 1990, The Journal of cell biology,
T J Monica, and D C Andersen, and C F Goochee
February 2022, RSC chemical biology,
T J Monica, and D C Andersen, and C F Goochee
July 2001, Cellular and molecular life sciences : CMLS,
T J Monica, and D C Andersen, and C F Goochee
January 1982, Methods in enzymology,
T J Monica, and D C Andersen, and C F Goochee
July 1997, The Biochemical journal,
T J Monica, and D C Andersen, and C F Goochee
May 2015, Traffic (Copenhagen, Denmark),
Copied contents to your clipboard!