Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. 1997

E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
Department of Clinical Neurology, Albert Szent-Györgyi University Medical School, Szeged, Hungary. knyihar@nepsy.szote.u-szeged.hu

The supratentorial cerebral dura of the albino rat is equipped with a rich sensory innervation including nociceptive axons and their terminals, which display intense calcitonin gene-related peptide (CGRP) immunoreactivity both in the connective tissue and around blood vessels. Stereotactic electrical stimulation of the trigeminal (Gasserian) ganglion, regarded as an experimental migraine model, induces marked increase and disintegration of club-like perivascular CGRP-immunopositive nerve endings in the dura. Intravenous administration of sumatriptan, prior to electrical stimulation, prevents disintegration of perivascular terminals and induces accumulation of CGRP in terminal and preterminal portions of peripheral sensory axons. Consequently, immunopositive terminals and varicosities increase in size; accumulation of axoplasmic organelles results in a "hollow" appearance of many varicosities. Since sumatriptan exerts its anti-migraine effect by virtue of its agonist action on 5-HT1D receptors, we suggest that sumatriptan prevents the release of CGRP from dural perivascular terminals by an action at 5-HT1D receptors. In the caudal trigeminal nucleus electrical stimulation of the trigeminal ganglion induces, in interneurons, increased expression of the oncoprotein c-fos which is not prevented by intravenous application of sumatriptan. Disparate findings regarding this effect are partly due to the fact that sumatriptan very poorly passes the blood-brain barrier and partly to different experimental paradigms used by different authors.

UI MeSH Term Description Entries
D008297 Male Males
D008526 Medulla Oblongata The lower portion of the BRAIN STEM. It is inferior to the PONS and anterior to the CEREBELLUM. Medulla oblongata serves as a relay station between the brain and the spinal cord, and contains centers for regulating respiratory, vasomotor, cardiac, and reflex activities. Accessory Cuneate Nucleus,Ambiguous Nucleus,Arcuate Nucleus of the Medulla,Arcuate Nucleus-1,External Cuneate Nucleus,Lateral Cuneate Nucleus,Nucleus Ambiguus,Ambiguus, Nucleus,Arcuate Nucleus 1,Arcuate Nucleus-1s,Cuneate Nucleus, Accessory,Cuneate Nucleus, External,Cuneate Nucleus, Lateral,Medulla Oblongatas,Nucleus, Accessory Cuneate,Nucleus, Ambiguous,Nucleus, External Cuneate,Nucleus, Lateral Cuneate
D008881 Migraine Disorders A class of disabling primary headache disorders, characterized by recurrent unilateral pulsatile headaches. The two major subtypes are common migraine (without aura) and classic migraine (with aura or neurological symptoms). (International Classification of Headache Disorders, 2nd ed. Cephalalgia 2004: suppl 1) Acute Confusional Migraine,Headache, Migraine,Status Migrainosus,Abdominal Migraine,Cervical Migraine Syndrome,Hemicrania Migraine,Migraine,Migraine Headache,Migraine Variant,Sick Headache,Abdominal Migraines,Acute Confusional Migraines,Cervical Migraine Syndromes,Disorder, Migraine,Disorders, Migraine,Headache, Sick,Headaches, Migraine,Headaches, Sick,Hemicrania Migraines,Migraine Disorder,Migraine Headaches,Migraine Syndrome, Cervical,Migraine Syndromes, Cervical,Migraine Variants,Migraine, Abdominal,Migraine, Acute Confusional,Migraine, Hemicrania,Migraines,Migraines, Abdominal,Migraines, Acute Confusional,Migraines, Hemicrania,Sick Headaches,Variant, Migraine,Variants, Migraine
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001812 Blood-Brain Barrier Specialized non-fenestrated tightly-joined ENDOTHELIAL CELLS with TIGHT JUNCTIONS that form a transport barrier for certain substances between the cerebral capillaries and the BRAIN tissue. Brain-Blood Barrier,Hemato-Encephalic Barrier,Barrier, Blood-Brain,Barrier, Brain-Blood,Barrier, Hemato-Encephalic,Barriers, Blood-Brain,Barriers, Brain-Blood,Barriers, Hemato-Encephalic,Blood Brain Barrier,Blood-Brain Barriers,Brain Blood Barrier,Brain-Blood Barriers,Hemato Encephalic Barrier,Hemato-Encephalic Barriers
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004388 Dura Mater The outermost of the three MENINGES, a fibrous membrane of connective tissue that covers the brain and the spinal cord. Falx Cerebelli,Falx Cerebri,Pachymeninx,Tentorium Cerebelli
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical

Related Publications

E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
July 1991, The Journal of comparative neurology,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
January 2007, Journal of neural transmission (Vienna, Austria : 1996),
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
March 1995, Neuropharmacology,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
June 2014, The neuroradiology journal,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
November 2006, Ideggyogyaszati szemle,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
December 2017, The journal of headache and pain,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
April 2015, Journal of neuroscience research,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
December 2008, Zhen ci yan jiu = Acupuncture research,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
January 1951, Rivista di neurologia,
E Knyihár-Csillik, and J Tajti, and M Samsam, and G Sáry, and S Slezák, and L Vécsei
July 1996, The Anatomical record,
Copied contents to your clipboard!