Ionic mechanisms of tetrandrine in cultured rat aortic smooth muscle cells. 1997

S N Wu, and T L Hwang, and C R Jan, and C J Tseng
Department of Medical Education and Research, Veterans General Hospital-Kaohsiung, Kaohsiung City, Taiwan. snwu@isca.vghks.gov.tw

The ionic mechanism of tetrandrine, an alkaloid extracted from the Chinese medicinal herb Radix stephania tetrandrae, was investigated in A7r5 vascular smooth muscle cells. The nystatin-perforated whole-cell voltage-clamp technique was performed to examine the effects of tetrandrine on ionic currents. Tetrandrine (1-100 microM) reversibly caused an inhibition of L-type voltage-dependent Ca2+ current (I(Ca,L)) in a concentration-dependent manner. Tetrandrine did not cause any change in the overall shape of the current-voltage relationship of I(Ca,L). The IC50 value of tetrandrine-induced inhibition of I(Ca,L) was 5 microM. In the presence of Bay K 8644 (3 microM) or cyclopiazonic acid (30 microM), tetrandrine still produced a significant inhibition of I(Ca,L). The inhibitory effects of tetrandrine on I(Ca,L) exhibited tonic and use-dependent characteristics. Moreover. tetrandrine (3 microM) shifted the steady-state inactivation curve of I(Ca,L) to more negative membrane potentials by approximately -15 mV. These results indicate that tetrandrine directly inhibits the voltage-dependent L-type Ca2+ current in vascular smooth muscle cells, which may predominantly contribute to the vasodilatory actions of tetrandrine.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001013 Aorta, Thoracic The portion of the descending aorta proceeding from the arch of the aorta and extending to the DIAPHRAGM, eventually connecting to the ABDOMINAL AORTA. Aorta, Ascending,Aorta, Descending,Aortic Arch,Aortic Root,Arch of the Aorta,Descending Aorta,Sinotubular Junction,Ascending Aorta,Thoracic Aorta,Aortic Roots,Arch, Aortic,Ascending Aortas,Junction, Sinotubular,Root, Aortic,Sinotubular Junctions
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D044182 Benzylisoquinolines ISOQUINOLINES with a benzyl substituent. Benzyl-Isoquinoline,Benzylisoquinoline,Bis-Benzyl-Isoquinoline,Bis-Benzylisoquinoline,Bisbenzylisoquinoline,Bisbenzylisoquinolines,Benzyl-Isoquinolines,Bis-Benzyl-Isoquinolines,Bis-Benzylisoquinolines,Benzyl Isoquinoline,Benzyl Isoquinolines,Bis Benzyl Isoquinoline,Bis Benzyl Isoquinolines,Bis Benzylisoquinoline,Bis Benzylisoquinolines
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S N Wu, and T L Hwang, and C R Jan, and C J Tseng
January 1996, British journal of pharmacology,
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
November 1999, Differentiation; research in biological diversity,
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
December 2003, Life sciences,
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
January 1990, Clinical and experimental hypertension. Part A, Theory and practice,
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
December 2011, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology,
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
December 1987, Journal of biochemistry,
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
January 1990, Proceedings of the Western Pharmacology Society,
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
October 1989, Hypertension (Dallas, Tex. : 1979),
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
August 2004, Inflammation research : official journal of the European Histamine Research Society ... [et al.],
S N Wu, and T L Hwang, and C R Jan, and C J Tseng
September 1991, Circulation research,
Copied contents to your clipboard!