Developmental regulation and cell-specific expression of N-methyl-D-aspartate receptor splice variants in rat hippocampus. 1997

M C Paupard, and L K Friedman, and R S Zukin
Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, U.S.A.

The present study demonstrates cell-specific and developmental regulation of 5' and 3' splicing of the N-methyl-D-aspartate receptor NR1 subunit within specific neuronal populations of the hippocampus. At birth, NR1 transcripts lacking exon 5 (encoding the amino-terminal splice cassette N1) exhibit mature patterns of labelling within the hippocampus, with high levels of expression in the CA1, CA3, and dentate gyrus. In contrast, exon 5-containing (NR1(1XX)) transcripts are expressed at low levels until P8, at which time expression is prominent and essentially uniform in the CA1, CA3, and dentate gyrus. Exon 5 expression increases at a faster rate in CA3 than in CA1 or dentate gyrus. By the third week postnatal (postnatal day P21), exon 5-containing transcripts exhibit a distinct gradient of labelling, with more intense expression in CA3, than in CA1 or dentate gyrus. By P21 pyramidal neurons of the CA1 and granule cells of the dentate gyrus express mainly NR1(0XX) receptor messenger RNAs (lacking exon 5). Because splicing in of the N1 splice cassette confers greater current amplitude and enhanced potentiation by protein kinase C, these observations predict elevated levels of synaptic activity in the CA1 early in postnatal life, a time at which synaptic plasticity is enhanced. The carboxy-terminal splice cassettes C1 and C2 are regulated independently within the hippocampus. Whereas NR1(X11) (C1-, C2-containing) and NR1(X01) (C2 only) receptors exhibit high levels of expression in CA1, CA3, and dentate gyrus, NR1(X00) receptors are expressed more intensely in pyramidal neurons of CA3. NR1(X10) receptor expression is very low in all cells and at all times examined, even in adults. Because splicing in of the C1 cassette is thought to regulate receptor targeting, clustering, and cytoskeletal interactions, N-methyl-D-aspartate receptors in the two hippocampal subfields may play differing roles in synaptogenesis and the formation of new neuronal contacts. Moreover, cell-specific patterns of NR1(X11) receptor messenger RNAs parallel those of NR1(0XX) receptor messenger RNAs; and cell-specific patterns of NR1(1XX) (N1-containing) receptor messenger RNAs parallels those of NR1(X00) (C1-, C2-lacking) receptor messenger RNAs throughout development. These observations suggest that NR1(100) receptors, which exhibits the greatest potentiation by protein kinase C, are likely to be important in CA1 during the second and third weeks postnatal. Cell-specific expression of NR1 splice variants undoubtedly contributes to functional diversity of N-methyl-D-aspartate receptor properties in neuronal populations within the hippocampus. Developmental regulation of NR1 splicing is likely to influence synaptic plasticity and the formation of new synaptic contacts. Moreover, findings from this study suggest that a change in NR1 splicing following a neurological injury could significantly alter glutamate pathogenicity in a particular population of cells.

UI MeSH Term Description Entries
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012326 RNA Splicing The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm. RNA, Messenger, Splicing,Splicing, RNA,RNA Splicings,Splicings, RNA
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

M C Paupard, and L K Friedman, and R S Zukin
August 2003, Journal of neuroscience research,
M C Paupard, and L K Friedman, and R S Zukin
February 2015, The Journal of biological chemistry,
M C Paupard, and L K Friedman, and R S Zukin
October 2021, Neuropeptides,
M C Paupard, and L K Friedman, and R S Zukin
June 1996, The Journal of biological chemistry,
M C Paupard, and L K Friedman, and R S Zukin
April 2001, Journal of neurochemistry,
Copied contents to your clipboard!