Serotonergic regulation of circadian rhythms in Syrian hamsters. 1997

E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
Department of Biology, Georgia State University, Atlanta 30303, U.S.A.

This study investigated the effects of (+/-)-2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydronaphthaline hydrobromide (8-OH-DPAT) on circadian rhythms in Syrian hamsters. Systemic administration of 8-OH-DPAT (0.75 mg in 150 microl saline) at circadian time 7 produced phase advances in the circadian activity rhythm. These 8-OH-DPAT-induced phase advances were blocked by microinjection of bicuculline (166 ng, 200 nl) into the suprachiasmatic nucleus, suggesting that GABAergic activity in the suprachiasmatic nucleus mediates the phase shifts produced by systemic injections of 8-OH-DPAT. Microinjection of 8-OH-DPAT (1 microg, 200 nl) or serotonin (0.7 microg, 200 nl) directly into the suprachiasmatic nucleus did not induce phase shifts at circadian time 7, suggesting that the phase shifting effects of systemic injection of 8-OH-DPAT are mediated outside the suprachiasmatic nucleus. To examine possible sites of action of 8-OH-DPAT, 8-OH-DPAT (0.5 microg (100 nl) or 1.0 microg (200 nl)) was microinjected into the intergeniculate leaflet, dorsal raphe nuclei, and the median raphe nucleus at circadian time 7. Significant phase advances were observed after microinjection into the dorsal raphe and median raphe but not the intergeniculate leaflet. These results support the hypothesis that systemic injection of serotonergic agonists can alter circadian rhythms via action in the midbrain raphe nucleus, and that the phase shifts induced by microinjection of 8-OH-DPAT into the raphe nuclei are mediated by a neurotransmitter other than serotonin within the suprachiasmatic nucleus.

UI MeSH Term Description Entries
D008297 Male Males
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D013493 Suprachiasmatic Nucleus An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM. Hypothalamic Suprachiasmatic Nuclei,Hypothalamic Suprachiasmatic Nucleus,Suprachiasmatic Nuclei,Suprachiasmatic Nuclei, Hypothalamic,Suprachiasmatic Nucleus, Hypothalamic
D017371 8-Hydroxy-2-(di-n-propylamino)tetralin A serotonin 1A-receptor agonist that is used experimentally to test the effects of serotonin. 8-OH-DPAT,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide, (+-)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide, (R)-Isomer,,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrobromide, (S)-Isomer,,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrochloride, (R)-Isomer,,8-Hydroxy-2-(di-n-propylamino)tetralin Hydrochloride, (S)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin, (+-)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin, (R)-Isomer,8-Hydroxy-2-(di-n-propylamino)tetralin, (S)-Isomer

Related Publications

E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
August 2002, Physiology & behavior,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
March 1996, Neuroscience letters,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
December 1996, Brain research,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
June 2019, The Yale journal of biology and medicine,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
February 1999, Endocrinology,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
July 1992, The American journal of physiology,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
April 1994, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
October 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
January 1987, Nature,
E M Mintz, and C F Gillespie, and C L Marvel, and K L Huhman, and H E Albers
November 1997, Biology of the cell,
Copied contents to your clipboard!