Localization of angiotensin-converting enzyme, angiotensin II, angiotensin II receptor subtypes, and vasopressin in the mouse hypothalamus. 1997

O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, MD 20892, USA. johreno@irp.nimh.nih.gov

The hypothalamic angiotensin II (Ang II) system plays an important role in pituitary hormone release. Little is known about this system in the mouse brain. We studied the distribution of angiotensin-converting-enzyme (ACE), Ang II, Ang II receptor subtypes, and vasopressin in the hypothalamus of adult male mice. Autoradiography of binding of the ACE inhibitor [125I]351A revealed low levels of ACE throughout the hypothalamus. Ang II- and vasopressin-immunoreactive neurons and fibers were detected in the paraventricular, accessory magnocellulary, and supraoptic nuclei, in the retrochiasmatic part of the supraoptic nucleus and in the median eminence. Autoradiography of Ang II receptors was performed using [125I]Sar1-Ang II binding. Ang II receptors were present in the paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, and in the median eminence. In all areas [125I]Sar1-Ang II binding was displaced by the AT1 receptor antagonist losartan, indicating the presence of AT1 receptors. In the paraventricular nucleus [125I]Sar1-Ang II binding was displaced by Ang II (Ki = 7.6 X 10(-9)) and losartan (Ki = 1.4 X 10(-7)) but also by the AT2 receptor ligand PD 123319 (Ki = 5.0 X 10(-7)). In addition, a low amount of AT2 receptor binding was detected in the paraventricular nucleus using [125I]CGP42112 as radioligand, and the binding was displaced by Ang II (Ki = 2.4 X 10(-9)), CGP42112 (Ki = 7.9 x 10(-10)), and PD123319 (Ki = 2.2 x 10(-7)). ACE, Ang II, and AT1 as well as AT2 receptor subtypes are present in the mouse hypothalamus. Our data are the basis for further studies on the mouse brain Ang II system.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007703 Peptidyl-Dipeptidase A A peptidyl-dipeptidase that catalyzes the release of a C-terminal dipeptide, oligopeptide-|-Xaa-Yaa, when Xaa is not Pro, and Yaa is neither Asp nor Glu. Thus, conversion of ANGIOTENSIN I to ANGIOTENSIN II, with increase in vasoconstrictor activity, but no action on angiotensin II. It is also able to inactivate BRADYKININ, a potent vasodilator; and has a glycosidase activity which releases GPI-anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety. (From https://www.uniprot.org April 15, 2020). ACE1 Angiotensin-Converting Enzyme 1,ACE1 Protein,Angiotensin Converting Enzyme,Angiotensin Converting Enzyme 1,Antigens, CD143,CD143 Antigens,Dipeptidyl Carboxypeptidase I,Kininase II,Peptidase P,Angiotensin I-Converting Enzyme,Carboxycathepsin,Dipeptidyl Peptidase A,Kininase A,ACE1 Angiotensin Converting Enzyme 1,Angiotensin I Converting Enzyme,Carboxypeptidase I, Dipeptidyl,Peptidyl Dipeptidase A
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D000804 Angiotensin II An octapeptide that is a potent but labile vasoconstrictor. It is produced from angiotensin I after the removal of two amino acids at the C-terminal by ANGIOTENSIN CONVERTING ENZYME. The amino acid in position 5 varies in different species. To block VASOCONSTRICTION and HYPERTENSION effect of angiotensin II, patients are often treated with ACE INHIBITORS or with ANGIOTENSIN II TYPE 1 RECEPTOR BLOCKERS. Angiotensin II, Ile(5)-,Angiotensin II, Val(5)-,5-L-Isoleucine Angiotensin II,ANG-(1-8)Octapeptide,Angiotensin II, Isoleucine(5)-,Angiotensin II, Valine(5)-,Angiotensin-(1-8) Octapeptide,Isoleucine(5)-Angiotensin,Isoleucyl(5)-Angiotensin II,Valyl(5)-Angiotensin II,5 L Isoleucine Angiotensin II,Angiotensin II, 5-L-Isoleucine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
December 1993, Brain research,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
May 1993, Biochemical and biophysical research communications,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
January 1996, Experimental nephrology,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
January 2004, Ophthalmic research,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
March 1988, The Journal of comparative neurology,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
December 2004, Archives of otolaryngology--head & neck surgery,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
January 1976, Tissue & cell,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
May 2005, Circulation,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
June 2020, Journal of hypertension,
O Jöhren, and H Imboden, and W Häuser, and I Maye, and G L Sanvitto, and J M Saavedra
January 1986, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!