The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. 1997

T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

Analysis of the molluscum contagiosum virus (MCV) genome revealed that it encodes approximately 182 proteins, 105 of which have direct counterparts in orthopoxviruses (OPV). The corresponding OPV proteins comprise those known to be essential for replication as well as many that are still uncharacterized, including 2 of less than 60 amino acids that had not been previously noted. The OPV proteins most highly conserved in MCV are involved in transcription; the least conserved include membrane glycoproteins. Twenty of the MCV proteins with OPV counterparts also have cellular homologs and additional MCV proteins have conserved functional motifs. Of the 77 predicted MCV proteins without OPV counterparts, 10 have similarity to other MCV proteins and/or distant similarity to proteins of other poxviruses and 16 have cellular homologs including some predicted to antagonize host defenses. Clustering poxvirus proteins by sequence similarity revealed 3 unique MCV gene families and 8 families that are conserved in MCV and OPV. Two unique families contain putative membrane receptors; the third includes 2 proteins, each containing 2 DED apoptosis signal transduction domains. Additional families with conserved patterns of cysteines and putative redox active centers were identified. Promoters, transcription termination signals, and DNA concatemer resolution sequences are highly conserved in MCV and OPV. Phylogenetic analysis suggested that MCV, OPV, and leporipoxviruses radiated from a common poxvirus ancestor after the divergence of avipoxviruses. Despite the acquisition of unique genes for host interactions and changes in GC content, the physical order and regulation of essential ancestral poxvirus genes have been largely conserved in MCV and OPV.

UI MeSH Term Description Entries
D007181 Inclusion Bodies, Viral An area showing altered staining behavior in the nucleus or cytoplasm of a virus-infected cell. Some inclusion bodies represent "virus factories" in which viral nucleic acid or protein is being synthesized; others are merely artifacts of fixation and staining. One example, Negri bodies, are found in the cytoplasm or processes of nerve cells in animals that have died from rabies. Negri Bodies,Viral Inclusion Bodies,Negri Body,Bodies, Negri,Bodies, Viral Inclusion,Body, Negri,Body, Viral Inclusion,Inclusion Body, Viral,Viral Inclusion Body
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008977 Molluscum contagiosum virus A species of MOLLUSCIPOXVIRUS causing skin lesions in humans. It is transmitted by direct contact or from non-living reservoirs (fomites), such as books or clothing. Molluscum contagiosum viruses
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011212 Poxviridae A family of double-stranded DNA viruses infecting mammals (including humans), birds and insects. There are two subfamilies: CHORDOPOXVIRINAE, poxviruses of vertebrates, and ENTOMOPOXVIRINAE, poxviruses of insects. Poxviruses
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002477 Cells The fundamental, structural, and functional units or subunits of living organisms. They are composed of CYTOPLASM containing various ORGANELLES and a CELL MEMBRANE boundary. Cell
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene

Related Publications

T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
September 1977, Virology,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
January 1997, The Journal of infection,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
January 1992, Molecular and cell biology of human diseases series,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
April 1979, Virology,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
January 1986, Journal of medical virology,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
January 1954, Suvremenna meditsina,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
October 2013, The Lancet. Infectious diseases,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
July 1953, Der Hautarzt; Zeitschrift fur Dermatologie, Venerologie, und verwandte Gebiete,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
November 1995, Virology,
T G Senkevich, and E V Koonin, and J J Bugert, and G Darai, and B Moss
January 1964, Journal of electron microscopy,
Copied contents to your clipboard!