Inhibition of Plasmodium falciparum proliferation in vitro by ribozymes. 1997

M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney 2052, Australia. m.flores@unsw.edu.au

Catalytic RNA (ribozymes) suppressed the growth of the human malarial parasite Plasmodium falciparum in vitro. The phosphorothioated hammerhead ribozymes targeted unique regions of the P. falciparum carbamoyl-phosphate synthetase II gene. The P. falciparum carbamoyl-phosphate synthetase II gene encodes the first and limiting enzyme in the pathway, and its mRNA transcript contains two large insert regions absent in other carbamoyl-phosphate synthetases, including that from humans. These inserts are ideal targets for nucleic acid therapy. Exogenous delivery of ribozymes to cultures reduced malarial viability up to 55% at 0.5 microM ribozyme concentrations, which is significantly greater than control levels (5-15% reduction), suggesting a sequence-specific inhibition. This inhibition was shown to be stage-specific, with optimal inhibitions being detected after 24 h, coincident with maximal production of the carbamoyl-phosphate synthetase enzyme in the course of the life cycle of the parasite. A decrease in total carbamoyl-phosphate synthetase activity was observed only in cultures treated with the ribozymes. The task of developing alternative therapeutic agents against malaria is urgent due to the evolution of drug-resistant strains of P. falciparum, the most virulent of all human malarial parasites. Another critical issue to be addressed is the possibility of eliminating or reducing any systemic toxicity to the host, which can potentially be provided by nucleic acid therapy. This work is the first reported assessment of the ability of ribozymes as antimalarials. Ribozyme inhibition assays can also aid in identifying important antimalarial loci for chemotherapy. The malarial parasite can, in turn, be a useful in vivo host to study the catalysis and function of new ribozyme designs.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D010963 Plasmodium falciparum A species of protozoa that is the causal agent of falciparum malaria (MALARIA, FALCIPARUM). It is most prevalent in the tropics and subtropics. Plasmodium falciparums,falciparums, Plasmodium
D002223 Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing) An enzyme that catalyzes the formation of carbamoyl phosphate from ATP, carbon dioxide, and glutamine. This enzyme is important in the de novo biosynthesis of pyrimidines. EC 6.3.5.5. Carbamyl Phosphate Synthase (Glutamine),Carbamoyl-Phosphate Synthase (Glutamine),Carbamoylphosphate Synthetase II,Carbamyl Phosphate Synthase II,Carbamyl-Phosphate Synthase (Glutamine),Synthetase II, Carbamoylphosphate
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000962 Antimalarials Agents used in the treatment of malaria. They are usually classified on the basis of their action against plasmodia at different stages in their life cycle in the human. (From AMA, Drug Evaluations Annual, 1992, p1585) Anti-Malarial,Antimalarial,Antimalarial Agent,Antimalarial Drug,Anti-Malarials,Antimalarial Agents,Antimalarial Drugs,Agent, Antimalarial,Agents, Antimalarial,Anti Malarial,Anti Malarials,Drug, Antimalarial,Drugs, Antimalarial

Related Publications

M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
March 2003, Biochemical and biophysical research communications,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
September 1982, The American journal of tropical medicine and hygiene,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
July 2001, Parasitology research,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
December 1989, Parasitology,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
May 2016, Experimental parasitology,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
April 2009, Biochemical and biophysical research communications,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
January 1988, Transactions of the Royal Society of Tropical Medicine and Hygiene,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
April 2007, Antimicrobial agents and chemotherapy,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
January 1984, The American journal of tropical medicine and hygiene,
M V Flores, and D Atkins, and D Wade, and W J O'Sullivan, and T S Stewart
January 1979, Bulletin of the World Health Organization,
Copied contents to your clipboard!