Role of the glycine triad in the ATP-binding site of cAMP-dependent protein kinase. 1997

W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
Swiss Federal Office of Public Health, Division of Food Science, Section of Microbiology and Hygiene, CH-3003 Bern, Switzerland.

A glycine-rich loop in the ATP-binding site is one of the most highly conserved sequence motifs in protein kinases. Each conserved glycine (Gly-50, Gly-52, and Gly-55) in the catalytic (C) subunit of cAMP-dependent protein kinase (cAPK) was replaced with Ser and/or Ala. Active mutant proteins were expressed in Escherichia coli, purified to apparent homogeneity, separated into phosphoisoforms, and characterized. Replacing Gly-55 had minimal effects on steady-state kinetic parameters, whereas replacement of either Gly-50 or Gly-52 had major effects on both Km and kcat values consistent with the prediction of the importance of the tip of the glycine-rich loop for catalysis. Substitution of Gly-50 caused a 5-8-fold reduction in Km (ATP), an 8-12-fold increase in Km (peptide), and a 3-5-fold drop in kcat. The Km (ATP) and Km (peptide) values of C(G52S) were increased 8- and 18-fold, respectively, and the kcat was decreased 6-fold. In contrast to catalytic efficiency, the ATPase rates of C(G50S) and C(G52S) were increased by more than an order of magnitude. The thermostability of each mutant was slightly increased. Unphosphorylated C(G52S) was characterized as well as several isoforms phosphorylated at a single site, Ser-338. All of these phosphorylation-defective mutants displayed a substantial decrease in both enzymatic activity and thermal stability that correlated with the missing phosphate at Thr-197. These results are correlated with the crystal structure, models of the respective mutant proteins, and conservation of the Glys within the protein kinase family.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D005998 Glycine A non-essential amino acid. It is found primarily in gelatin and silk fibroin and used therapeutically as a nutrient. It is also a fast inhibitory neurotransmitter. Aminoacetic Acid,Glycine, Monopotassium Salt,Glycine Carbonate (1:1), Monosodium Salt,Glycine Carbonate (2:1), Monolithium Salt,Glycine Carbonate (2:1), Monopotassium Salt,Glycine Carbonate (2:1), Monosodium Salt,Glycine Hydrochloride,Glycine Hydrochloride (2:1),Glycine Phosphate,Glycine Phosphate (1:1),Glycine Sulfate (3:1),Glycine, Calcium Salt,Glycine, Calcium Salt (2:1),Glycine, Cobalt Salt,Glycine, Copper Salt,Glycine, Monoammonium Salt,Glycine, Monosodium Salt,Glycine, Sodium Hydrogen Carbonate,Acid, Aminoacetic,Calcium Salt Glycine,Cobalt Salt Glycine,Copper Salt Glycine,Hydrochloride, Glycine,Monoammonium Salt Glycine,Monopotassium Salt Glycine,Monosodium Salt Glycine,Phosphate, Glycine,Salt Glycine, Monoammonium,Salt Glycine, Monopotassium,Salt Glycine, Monosodium
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
February 1982, European journal of biochemistry,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
April 1984, European journal of biochemistry,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
January 1982, The Journal of biological chemistry,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
February 1992, The American journal of physiology,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
December 1988, The Journal of biological chemistry,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
July 1988, The Journal of biological chemistry,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
February 1982, The Journal of biological chemistry,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
June 1984, The Biochemical journal,
W Hemmer, and M McGlone, and I Tsigelny, and S S Taylor
November 1990, The Journal of biological chemistry,
Copied contents to your clipboard!