ClpX and MuB interact with overlapping regions of Mu transposase: implications for control of the transposition pathway. 1997

I Levchenko, and M Yamauchi, and T A Baker
Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA.

Transposition of phage Mu is catalyzed by an extremely stable transposase-DNA complex. Once recombination is complete, the Escherichia coli ClpX protein, a member of the Clp/Hsp100 chaperone family, initiates disassembly of the complex for phage DNA replication to commence. To understand how the transition between recombination and replication is controlled, we investigated how transposase-DNA complexes are recognized by ClpX. We find that a 10-amino-acid peptide from the carboxy-terminal domain of transposase is required for its recognition by ClpX. This short, positively charged peptide is also sufficient to convert a heterologous protein into a ClpX substrate. The region of transposase that interacts with the transposition activator, MuB protein, is also defined further and found to overlap with that recognized by ClpX. As a consequence, MuB inhibits disassembly of several transposase-DNA complexes that are intermediates in recombination. This ability of MuB to block access to transposase suggests a mechanism for restricting ClpX-mediated remodeling to the proper stage during replicative transposition. We propose that overlap of sequences involved in subunit interactions and those that target a protein for remodeling or destruction may be a useful design for proteins that function in pathways where remodeling or degradation must be regulated.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008961 Models, Structural A representation, generally small in scale, to show the structure, construction, or appearance of something. (From Random House Unabridged Dictionary, 2d ed) Model, Structural,Structural Model,Structural Models
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010583 Bacteriophage mu A temperate coliphage, in the genus Mu-like viruses, family MYOVIRIDAE, composed of a linear, double-stranded molecule of DNA, which is able to insert itself randomly at any point on the host chromosome. It frequently causes a mutation by interrupting the continuity of the bacterial OPERON at the site of insertion. Coliphage mu,Enterobacteria phage Mu,Phage mu,mu Phage,mu Phages
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000074183 ATPases Associated with Diverse Cellular Activities A large highly conserved family of ATPases with diverse functions in cells that are characterized by the presence of a P-LOOP and a ring shape. They couple the energy generated by ATP hydrolysis to remodeling or mechanical translocation of their target molecules. AAA ATPase,AAA Protease,AAA+ ATPase,AAA+ Protease,AAA ATPases,AAA Proteases,AAA+ ATPases,AAA+ Proteases,ATPase, AAA,ATPase, AAA+,ATPases, AAA+,Protease, AAA,Protease, AAA+,Proteases, AAA,Proteases, AAA+

Related Publications

I Levchenko, and M Yamauchi, and T A Baker
September 1998, The EMBO journal,
I Levchenko, and M Yamauchi, and T A Baker
October 1995, Genes & development,
I Levchenko, and M Yamauchi, and T A Baker
June 1991, Cell,
I Levchenko, and M Yamauchi, and T A Baker
August 2005, Protein science : a publication of the Protein Society,
I Levchenko, and M Yamauchi, and T A Baker
October 1994, Genes & development,
I Levchenko, and M Yamauchi, and T A Baker
March 1994, Molecular microbiology,
Copied contents to your clipboard!