Apoptosis in the subependyma of young adult rats after single and fractionated doses of X-rays. 1997

C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
Brain Tumor Research Center, Department of Neurological Surgery, School of Medicine, University of California, San Francisco 94143-0520, USA.

Ionizing radiation is commonly used in the treatment of brain tumors but can cause significant damage to surrounding normal brain. The pathogenesis of this damage is uncertain, and understanding the response of potential target cell populations may provide information useful for developing strategies to optimize therapeutic irradiation. In the mammalian forebrain, the subependyma is a mitotically active area that is a source of oligodendrocytes and astrocytes, and it has been hypothesized that depletion of cells from this region could play a role in radiation-induced white matter injury. Using a distinct morphological pattern of nuclear fragmentation and an immunohistochemical method to specifically label the 3'-hydroxyl termini of DNA strand breaks (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling), we quantified apoptosis in the subependyma in the young adult rat brain after single and fractionated doses of X-rays. Significant increases in apoptotic index (percentage of cells showing apoptosis) were detected 3 h after irradiation, and the peak apoptotic index was detected at 6 h. Six h after irradiation, the dose response for apoptosis was characterized by a steep increase in apoptotic index between 0.5 and 2.0 Gy and a plateau from 2-30 Gy. The fraction of cells susceptible to apoptosis was estimated to be about 40%, and treatment of rats with cycloheximide inhibited apoptosis. When daily 1.5-Gy fractions of X-rays were administered, the first three fractions were equally effective at decreasing the cell population via apoptosis. There was no additional apoptosis or decrease in cellularity in spite of one to four additional doses of X-rays. Those data suggested some input of cells into the subependymal population during fractionated treatment, and subsequent studies showed that there was a significant rise in 5-bromo-2' deoxyuridine labeling index 2-3 days after irradiation, indicating increased cellular proliferation. The proliferative response after depletion of cells via apoptosis may represent the recruitment of a relatively quiescent stem cell population. It is possible that the radiation response of subependymal stem cells and not the apoptotic-sensitive population per se are critical elements in the response of the brain to radiation injury.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007381 Intermediate Filament Proteins Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein. Fibroblast Intermediate Filament Proteins,Filament Proteins, Intermediate,Proteins, Intermediate Filament
D008297 Male Males
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009708 Nucleotidases A class of enzymes that catalyze the conversion of a nucleotide and water to a nucleoside and orthophosphate. EC 3.1.3.-.
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003337 Corpus Callosum Broad plate of dense myelinated fibers that reciprocally interconnect regions of the cortex in all lobes with corresponding regions of the opposite hemisphere. The corpus callosum is located deep in the longitudinal fissure. Interhemispheric Commissure,Neocortical Commissure,Callosum, Corpus,Callosums, Corpus,Commissure, Interhemispheric,Commissure, Neocortical,Commissures, Interhemispheric,Commissures, Neocortical,Corpus Callosums,Interhemispheric Commissures,Neocortical Commissures
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004805 Ependyma A thin membrane that lines the CEREBRAL VENTRICLES and the central canal of the SPINAL CORD. Ependymas

Related Publications

C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
September 1982, International journal of radiation oncology, biology, physics,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
March 1956, Nature,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
April 1979, European journal of cancer,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
December 1974, Mutation research,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
January 1989, The British journal of radiology,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
July 1978, The British journal of radiology,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
June 1988, Radiation research,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
September 1992, Cell proliferation,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
January 1990, The British journal of radiology,
C Shinohara, and G T Gobbel, and K R Lamborn, and E Tada, and J R Fike
January 1975, Journal of dental research,
Copied contents to your clipboard!