Regulation of dopamine D1 and D2 receptors on striatal acetylcholine release in rats. 1997

Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
Department of Neuropsychopharmacology (Tsumura), Gunma University, School of Medicine, Japan.

The effects of dopamine (DA) D1 and D2 receptors on striatal acetylcholine (ACh) releases were investigated by in vivo microdialysis. All drugs were applied via dialysis membrane directly to the striatum. The levels of ACh release were increased by 10(-4) M SKF38393, a D1 receptor agonist. Although 10(-4) M SCH23390, a D1 receptor antagonist, exhibited an increase in the levels of ACh release, the agonist (10(-4) M) induced-increase in the levels of ACh release was suppressed by coperfusion of the antagonist (10(-4) M). In contrast, the levels of ACh release were decreased by the D2 receptor agonist, N-434, in a dose-dependent manner (10(-4) M to 10(-7) M) and increased by the D2 receptor antagonist, sulpiride, in a dose-dependent manner (10(-5) M to 10(-7) M). The agonist (10(-5) M) induced-decrease in the levels of ACh release was suppressed by coperfusion of the antagonist (10(-4) M). Coperfusion of D1 (10(-4) M) and D2 (10(-5) M) agonists blocked both effects of respective drug alone. In order to clarify the effect of endogenous DA, two drugs with different mechanisms for enhancing DA concentration in the synaptic cleft, the DA release-inducer methamphetamine, and the DA uptake inhibitor nomifensine were perfused separately. Both (10(-4) M to 10(-5) M) produced a dose- and a time-dependent decrease in the levels of ACh release. Significant higher levels of ACh release were observed in the striatum of the 6-hydroxydopamine (8 micrograms/10 microliters)-treated rats with significant depletion of striatal DA content. These results suggest that in striatal DA-ACh interaction ACh release, as cholinergic interneuron's activity, is tonically inhibited via the D2 receptor, mainly by dopaminergic input, and the D1 receptor probably modifies the effect of the D2 receptor indirectly.

UI MeSH Term Description Entries
D008297 Male Males
D009498 Neurotoxins Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept. Alpha-Neurotoxin,Excitatory Neurotoxin,Excitotoxins,Myotoxin,Myotoxins,Neurotoxin,Alpha-Neurotoxins,Excitatory Neurotoxins,Excitotoxin,Alpha Neurotoxin,Alpha Neurotoxins,Neurotoxin, Excitatory,Neurotoxins, Excitatory
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013378 Substantia Nigra The black substance in the ventral midbrain or the nucleus of cells containing the black substance. These cells produce DOPAMINE, an important neurotransmitter in regulation of the sensorimotor system and mood. The dark colored MELANIN is a by-product of dopamine synthesis. Nigra, Substantia,Nigras, Substantia,Substantia Nigras
D015102 3,4-Dihydroxyphenylacetic Acid A deaminated metabolite of LEVODOPA. DOPAC,Homoprotocatechuic Acid,3,4-Dihydroxyphenylacetic Acid, Monosodium Salt,3,4 Dihydroxyphenylacetic Acid
D016627 Oxidopamine A neurotransmitter analogue that depletes noradrenergic stores in nerve endings and induces a reduction of dopamine levels in the brain. Its mechanism of action is related to the production of cytolytic free-radicals. 6-Hydroxydopamine,6-OHDA,Oxidopamine Hydrobromide,Oxidopamine Hydrochloride,6 Hydroxydopamine,Hydrobromide, Oxidopamine,Hydrochloride, Oxidopamine

Related Publications

Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
January 1993, Progress in brain research,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
July 1992, Journal of neurochemistry,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
December 1979, European journal of pharmacology,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
April 1997, The Journal of pharmacology and experimental therapeutics,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
January 1992, Brain research. Molecular brain research,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
May 1996, The Journal of pharmacology and experimental therapeutics,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
February 2001, Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
January 2003, Pain,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
August 1993, The Journal of pharmacology and experimental therapeutics,
Y Ikarashi, and A Takahashi, and H Ishimaru, and T Arai, and Y Maruyama
July 2011, Genetics,
Copied contents to your clipboard!