RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. 1997

J E Visick, and S Clarke
Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles, 90095-1569, USA.

A rapid spectrophotometric assay to determine the activities of HPI and HPII catalases in Escherichia coli extracts has been developed. This assay is based upon the differential heat stabilities of the two enzymes and offers significant advantages over previous methods for quantitation of their activities. Measurement of catalase activities in extracts of various mutant strains confirmed the ability of this method to accurately distinguish the two activities. Contrary to previously published results, HPI catalase activity was observed to increase at stationary phase in strains lacking the stationary-phase sigma factor sigma(s) (RpoS). This increase was independent of OxyR and also occurred in a strain lacking the HPII structural gene, katE. These results suggest a potential novel pathway for HPI induction in response to increased oxidative stress in the absence of HPII. Measurement of HPII activity in strains carrying mutations in pcm (encoding the L-isoaspartyl protein methyltransferase) and surE led to the finding that these strains also have an amber mutation in rpoS; sequencing demonstrated the presence of this mutation in several commonly used laboratory strains of E. coli, including AB1157, W1485, and JC7623.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010544 Peroxidases Ovoperoxidase
D011496 Protein Methyltransferases Enzymes that catalyze the methylation of amino acids after their incorporation into a polypeptide chain. S-Adenosyl-L-methionine acts as the methylating agent. EC 2.1.1. Protein Methylase,Protein Methylases,Protein Methyltransferase,Methylase, Protein,Methylases, Protein,Methyltransferase, Protein,Methyltransferases, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

J E Visick, and S Clarke
December 1998, Journal of bacteriology,
J E Visick, and S Clarke
November 2005, Journal of bacteriology,
J E Visick, and S Clarke
April 2006, Mutation research,
J E Visick, and S Clarke
September 2002, Journal of bacteriology,
J E Visick, and S Clarke
September 1988, Journal of bacteriology,
J E Visick, and S Clarke
September 1995, Journal of bacteriology,
J E Visick, and S Clarke
June 1996, Research in microbiology,
Copied contents to your clipboard!