Cell signalling and CAM-mediated neurite outgrowth. 1997

F S Walsh, and K Meiri, and P Doherty
Department of Experimental Pathology, UMDS, Guy's Hospital, London, United Kingdom.

A wide range of molecules promote nerve growth, and these include cell adhesion molecules (CAMs), NCAM, N-cadherin, and the L1 glycoprotein are CAMs that are normally found on both the advancing growth cone and also on cellular substrates, and in general operate via a homophilic binding mechanism. In recent years it has become clear that nerve growth stimulated by these CAMs does not rely on the adhesion function of these molecules, but instead requires that the CAMs activate second messenger cascades in neurons. A large body of evidence supports the hypothesis that homophilic binding of the CAM in the substrate to the CAM in the neuron leads to activation of the neuronal FGF receptor, possibly via a direct interaction in cis between the CAM and the FGF receptor. The consequential activation of PLC gamma is both necessary and sufficient to account for the neurite outgrowth response stimulated by the above three CAMs. Based on the above model, we reasoned that soluble CAMs might also be able to stimulate neurite outgrowth and that such agents might be developed as potential therapeutic agents for stimulating nerve regeneration. To this end we have made soluble chimeric molecules consisting of the extracellular domain of NCAM or L1 fused to the Fc region of human IgG 1. We have found that these molecules can stimulate neurite outgrowth from rat and mouse cerebellar granule cells cultured on a variety of tissue culture substrates and that they do so by activating the FGF receptor signal transduction cascade in the neurons. Consistent with this model, we find that neurons that have their FGF receptor function ablated as a consequence of the expression of dominant negative FGF receptors, no longer respond to the soluble CAM. Downstream targets of CAM function have also been studied. Addition of soluble CAMs to isolated growth cone preparations from mouse or rat brain leads to enhanced phosphorylation of the GAP-43 protein providing a link between the cell surface and the cytoskeleton.

UI MeSH Term Description Entries
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion
D016501 Neurites In tissue culture, hairlike projections of neurons stimulated by growth factors and other molecules. These projections may go on to form a branched tree of dendrites or a single axon or they may be reabsorbed at a later stage of development. "Neurite" may refer to any filamentous or pointed outgrowth of an embryonal or tissue-culture neural cell. Neurite

Related Publications

F S Walsh, and K Meiri, and P Doherty
September 2009, Biochimica et biophysica acta,
F S Walsh, and K Meiri, and P Doherty
August 2008, Journal of neuroscience research,
F S Walsh, and K Meiri, and P Doherty
January 2005, The Journal of neuroscience : the official journal of the Society for Neuroscience,
F S Walsh, and K Meiri, and P Doherty
January 2014, Pediatric research,
F S Walsh, and K Meiri, and P Doherty
December 2006, Medical science monitor : international medical journal of experimental and clinical research,
F S Walsh, and K Meiri, and P Doherty
May 1992, The Journal of comparative neurology,
F S Walsh, and K Meiri, and P Doherty
March 1994, The Journal of cell biology,
Copied contents to your clipboard!