Modulation of renal hemodynamics by IGF-1 is absent in spontaneously hypertensive rats. 1997

Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
Third Department of Internal Medicine, Ohashi Hospital, Toho University School of Medicine, Japan.

We recently reported that attenuation of vasoactive agent-induced calcium signal and cell contraction of mesangial cell by insulin-like growth factor 1 (IGF-1), observed in normal mesangial cells, is totally abolished in spontaneously hypertensive rat (SHR) mesangial cells. This phenomenon might be related to the well-known aberrant regulation of SHR glomerular hemodynamics. Since it has been reported that in vivo IGF-1 infusion increases renal plasma flow (RPF) and glomerular filtration rate (GFR), we examined whether the modulation of renal function by IGF-1 is altered in SHR. We performed in vivo renal clearance studies using eight-week-old SHR and control Wistar Kyoto rats (WKY) before and after IGF-1 (5 micrograms/kg) infusion into the left renal artery for 20 minutes. Mean arterial pressure was not affected by IGF-1 in both WKY and SHR. In WKY, IGF-1 increased GFR and RPF, and decreased renal vascular resistance (RVR). However, GFR, RPF, and RVR were not altered by IGF-1 in SHR, while systemic infusion of angiotensin II antagonist, CV-11974, increased GFR and RPF. The present data show that the modulation of renal hemodynamics by IGF-1 is absent in SHR. This might be related the pathophysiology of the development of hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007269 Injections, Intra-Arterial Delivery of drugs into an artery. Injections, Intraarterial,Intra-Arterial Injections,Intraarterial Injections,Injection, Intra-Arterial,Injection, Intraarterial,Injections, Intra Arterial,Intra Arterial Injections,Intra-Arterial Injection,Intraarterial Injection
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
March 1979, The American journal of physiology,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
January 2002, Kidney & blood pressure research,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
January 2008, Autonomic & autacoid pharmacology,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
September 1981, The American journal of physiology,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
January 2012, Antioxidants & redox signaling,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
June 1995, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
January 1990, Clinical and experimental hypertension. Part A, Theory and practice,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
November 2001, American journal of physiology. Regulatory, integrative and comparative physiology,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
January 1990, Pharmacology,
Y Inishi, and T Katoh, and T Okuda, and T Yamaguchi, and K Kurokawa
November 1975, Japanese heart journal,
Copied contents to your clipboard!