Mitosis-specific phosphorylation of gar2, a fission yeast nucleolar protein structurally related to nucleolin. 1997

M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
Laboratoire de Biologie Moléculaire Eucaryote du CNRS, 118 Route de Narbonne, F-31062 Toulouse Cedex, France.

The nucleolar protein gar2 of fission yeast is structurally related to the multifunctional nucleolar protein nucleolin from vertebrates and has been shown to be implicated in production of 18S rRNA. gar2 contains several potential casein kinase 2 (CK2) phosphorylation sites and a single putative p34(cdc2 )phosphorylation site in the consensus S50PKK. Here, we show that, like nucleolin, gar2 is phosphorylated in vitro by both highly purified CK2 from CHO cells and p34(cdc2 )from starfish oocytes. Moreover, the substitution of alanine for the N-terminal serine 50 abolishes phosphorylation by p34(cdc2 )in vitro. We also provide evidence that gar2 is phosphorylated in vitro by a p13(suc1)-Sepharose-bound kinase from Schizosaccharomyces pombe extracts that displays cell cycle-regulated activity similar to that of the p34(cdc2(kinase. In vivo 32P labeling of cells indicates that gar2 is a phosphoprotein and that incorporation of phosphate on residue 50 occurs specifically at mitosis. Taken together, these results lead us to propose that gar2 is likely to be an in vivo substrate for the mitotic p34(cdc2 )kinase. However, this posttranslational modification of the gar2 protein does not appear to be essential for normal production of 18S rRNA.

UI MeSH Term Description Entries
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002466 Cell Nucleolus Within most types of eukaryotic CELL NUCLEUS, a distinct region, not delimited by a membrane, in which some species of rRNA (RNA, RIBOSOMAL) are synthesized and assembled into ribonucleoprotein subunits of ribosomes. In the nucleolus rRNA is transcribed from a nucleolar organizer, i.e., a group of tandemly repeated chromosomal genes which encode rRNA and which are transcribed by RNA polymerase I. (Singleton & Sainsbury, Dictionary of Microbiology & Molecular Biology, 2d ed) Plasmosome,Cell Nucleoli,Nucleoli, Cell,Nucleolus, Cell,Plasmosomes

Related Publications

M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
July 1990, Molecular and cellular biology,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
December 1987, Biochemistry,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
February 1994, The EMBO journal,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
November 1989, Nature,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
October 1998, Biochemical and biophysical research communications,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
July 2005, Molecular biology of the cell,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
June 1995, FEBS letters,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
August 2007, Molecular biology of the cell,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
June 1995, The EMBO journal,
M P Gulli, and M Faubladier, and H Sicard, and M Caizergues-Ferrer
January 1994, The Prostate,
Copied contents to your clipboard!