In vivo metabolic profile of a phosphorothioate oligodeoxyribonucleotide. 1997

J Temsamani, and A Roskey, and C Chaix, and S Agrawal
Hybridon, Inc. Cambridge, MA 02139, USA.

Antisense phosphorothioate oligodeoxyribonucleotides (PS oligonucleotides) have the ability to inhibit individual gene expression in the potential treatment of cancer and viral diseases. Following administration in vivo, PS oligonucleotides are rapidly cleared from the plasma and distributed to various organs. However, the manner in which administered oligonucleotides are metabolized in plasma and tissues is poorly understood. In this study, a 25-mer PS oligonucleotide (GEM91) complementary to the gag gene mRNA of the human immunodeficiency virus (HIV-1) was administered to mice through intravenous injections to investigate its metabolism. The PS oligonucleotide was extracted from plasma at 1 hour postadministration and from kidney and liver at 24 hours postadministration. After extraction, the PS oligonucleotide and its metabolites were tailed with dA and annealed to a dT-tailed plasmid. The recombinant plasmid was ligated and used to transform competent bacteria. The region of interest containing the PS oligonucleotide was then sequenced. Our results show that degradation of the PS oligonucleotide in plasma was primarily from the 3'-end. However, in kidney and liver, degradation was primarily from the 3'-end, but a large proportion of the PS oligonucleotide was degraded from the 5'-end as well. We also studied the metabolism of PS oligonucleotide in plasma after 2-hour intravenous infusion in HIV-infected patients. The degradation of the PS oligonucleotide in plasma was primarily from the 3'-end. This study is important in understanding the metabolism of antisense PS oligonucleotide in vivo in general but also provides guidance for designing second-generation antisense oligonucleotides with improved stability and safety profile.

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001711 Biotransformation The chemical alteration of an exogenous substance by or in a biological system. The alteration may inactivate the compound or it may result in the production of an active metabolite of an inactive parent compound. The alterations may be divided into METABOLIC DETOXICATION, PHASE I and METABOLIC DETOXICATION, PHASE II.
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA

Related Publications

J Temsamani, and A Roskey, and C Chaix, and S Agrawal
August 1994, BioTechniques,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
January 1992, Antisense research and development,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
January 1991, Nucleic acids symposium series,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
January 1992, Nucleic acids symposium series,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
December 1992, FEBS letters,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
August 1998, Bioorganic & medicinal chemistry letters,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
October 1995, Nucleic acids research,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
December 1996, Proceedings of the National Academy of Sciences of the United States of America,
J Temsamani, and A Roskey, and C Chaix, and S Agrawal
April 1999, Antisense & nucleic acid drug development,
Copied contents to your clipboard!