Quantitative visualization of flow through a centrifugal blood pump: effect of washout holes. 1997

M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
Biomimetics Division, Mechanical Engineering Laboratory, Tsukuba, Japan.

To clarify the effect of washout holes on the flow in a centrifugal blood pump to prevent blood stagnation, a quantitative flow visualization technique was applied to compare flows in models with and without washout holes. A scaled-up model of a prototype pump and a high speed video camera were used for the flow visualization, and images were processed by particle tracking velocimetry. Particular attention was paid to the flow through the gaps behind and in front of the impeller. The results showed that in the gap behind the impeller, washout holes caused not only an inward flow, but also an increase in the tangential velocities. In the gap in front of the impeller, washout holes caused an outward flow and a decrease in the tangential velocities. Head flow characteristics were little affected by the washout holes in this initial design for which the flow through the washout holes was set to be approximately 10% of the flow in the external circuit. These results suggest that the flow through washout holes is significant in the prevention of blood stagnation in 2 ways. First, the inward radial velocity behind the impeller and outward velocity in front of the impeller result in fluid exchange, and second, a tangential velocity increase reduces fluid stagnation behind the impeller.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D010316 Particle Size Relating to the size of solids. Particle Sizes,Size, Particle,Sizes, Particle
D011786 Quality Control A system for verifying and maintaining a desired level of quality in a product or process by careful planning, use of proper equipment, continued inspection, and corrective action as required. (Random House Unabridged Dictionary, 2d ed) Control, Quality,Controls, Quality,Quality Controls
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D002498 Centrifugation Process of using a rotating machine to generate centrifugal force to separate substances of different densities, remove moisture, or simulate gravitational effects. It employs a large motor-driven apparatus with a long arm, at the end of which human and animal subjects, biological specimens, or equipment can be revolved and rotated at various speeds to study gravitational effects. (From Websters, 10th ed; McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
D006353 Heart-Assist Devices Small pumps, often implantable, designed for temporarily assisting the heart, usually the LEFT VENTRICLE, to pump blood. They consist of a pumping chamber and a power source, which may be partially or totally external to the body and activated by electromagnetic motors. Artificial Ventricle,Heart Assist Device,Heart Ventricle, Artificial,Pumps, Heart-Assist,Vascular-Assist Device,Vascular-Assist Devices,Ventricle-Assist Device,Ventricular Assist Device,Artificial Heart Ventricle,Artificial Heart Ventricles,Artificial Ventricles,Assist Device, Heart,Assist Device, Ventricular,Assist Devices, Heart,Assist Devices, Ventricular,Device, Heart Assist,Device, Heart-Assist,Device, Vascular-Assist,Device, Ventricle-Assist,Device, Ventricular Assist,Devices, Heart Assist,Devices, Heart-Assist,Devices, Vascular-Assist,Devices, Ventricle-Assist,Devices, Ventricular Assist,Heart Assist Devices,Heart Ventricles, Artificial,Heart-Assist Device,Heart-Assist Pump,Heart-Assist Pumps,Pump, Heart-Assist,Pumps, Heart Assist,Vascular Assist Device,Vascular Assist Devices,Ventricle Assist Device,Ventricle, Artificial,Ventricle, Artificial Heart,Ventricle-Assist Devices,Ventricles, Artificial,Ventricles, Artificial Heart,Ventricular Assist Devices
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face

Related Publications

M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
January 1993, ASAIO journal (American Society for Artificial Internal Organs : 1992),
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
September 1994, Artificial organs,
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
February 1996, Artificial organs,
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
January 2002, ASAIO journal (American Society for Artificial Internal Organs : 1992),
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
June 2004, Artificial organs,
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
January 2002, ASAIO journal (American Society for Artificial Internal Organs : 1992),
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
July 1995, Artificial organs,
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
July 1997, Artificial organs,
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
May 2018, Artificial organs,
M Nishida, and T Yamane, and T Orita, and B Asztalos, and H Clarke
January 1986, ASAIO transactions,
Copied contents to your clipboard!