Development of tight junctions between odontoblasts in early dentinogenesis as revealed by freeze-fracture. 1997

V E Arana-Chavez, and E Katchburian
Department of Histology and Embryology, Institute of Biomedical Sciences, University of São Paulo, Brazil.

Mature odontoblasts possess junctional structures constituted by adherens, gap, and tight junctions. Although adherens and gap junctions appear early between odontoblasts, there is no information on the appearance and development of tight junctions between odontoblasts. In this study, we have examined freeze-fracture replicas of early dentinogenesis to study the development of tight junctions between odontoblasts and to determine whether these junctions are of zonular or macular type. Upper first molar tooth germs of Wistar rats between 1 and 3 days old were fixed in buffered 4% glutaraldehyde/4% formaldehyde and subsequently cryoprotected with cacodylate-buffered glycerol. Freeze-fracture replicas were obtained in a Balzers 301 apparatus, and early stages of dentinogenesis were examined in a Jeol 100 CX II electron microscope. In the stage of early dentine matrix prior to mineralization, odontoblasts exhibit only gap junctions. With the progression of development, the distal plasma membranes of odontoblasts show numerous short tight junctions formed by fused particles and grooves. In the stage of advanced mineralization, branched and continuous rows of fused particles or grooves constitute tight junctions of the focal or macular type. The present study shows that tight junctions of focal or macular type appear on distal plasma membrane of early odontoblasts during differentiation. Formation of tight junctions indicates the establishment of a distal membrane domain and maturation of odontoblasts. These events occur as mantle dentine formation ceases and circumpulpar dentine formation begins.

UI MeSH Term Description Entries
D008297 Male Males
D009804 Odontoblasts The mesenchymal cells which line the DENTAL PULP CAVITY and produce DENTIN. They have a columnar morphology in the coronal pulp but are cuboidal in the root pulp, or when adjacent to tertiary dentin. Odontoblast
D002113 Calcification, Physiologic Process by which organic tissue becomes hardened by the physiologic deposit of calcium salts. Bone Mineralization,Calcification, Physiological,Physiologic Calcification,Mineralization, Bone,Physiological Calcification
D003810 Dentinogenesis The formation of dentin. Dentin first appears in the layer between the ameloblasts and odontoblasts and becomes calcified immediately. Formation progresses from the tip of the papilla over its slope to form a calcified cap becoming thicker by the apposition of new layers pulpward. A layer of uncalcified dentin intervenes between the calcified tissue and the odontoblast and its processes. (From Jablonski, Dictionary of Dentistry, 1992) Dentinogeneses
D005260 Female Females
D005614 Freeze Fracturing Preparation for electron microscopy of minute replicas of exposed surfaces of the cell which have been ruptured in the frozen state. The specimen is frozen, then cleaved under high vacuum at the same temperature. The exposed surface is shadowed with carbon and platinum and coated with carbon to obtain a carbon replica. Fracturing, Freeze,Fracturings, Freeze,Freeze Fracturings
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

V E Arana-Chavez, and E Katchburian
January 1982, Archives of oral biology,
V E Arana-Chavez, and E Katchburian
December 1976, Nippon Ganka Gakkai zasshi,
V E Arana-Chavez, and E Katchburian
August 1995, Microscopy research and technique,
V E Arana-Chavez, and E Katchburian
January 2003, Methods in molecular medicine,
V E Arana-Chavez, and E Katchburian
January 2003, Methods in molecular medicine,
V E Arana-Chavez, and E Katchburian
August 2000, European journal of cell biology,
V E Arana-Chavez, and E Katchburian
January 1984, Archives of oral biology,
V E Arana-Chavez, and E Katchburian
January 1985, Cell and tissue research,
Copied contents to your clipboard!