The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription. 1997

I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
Department of Pharmacological Sciences, State University of New York at Stony Brook, 11794-8651, USA.

The mitochondrial HMG-box transcription factor xl-mtTFA activates bidirectional transcription by binding to a site separating two core promoters in Xenopus laevis mitochondrial DNA (mtDNA). Three independent approaches were used to study the higher order structure of xl-mtTFA binding to this site. First, co-immunoprecipitation of differentially tagged recombinant mtTFA derivatives established that the protein exists as a multimer. Second, in vitro chemical cross-linking experiments provided evidence of cross-linked dimers, trimers and tetramers of xl-mtTFA. Finally, high resolution scanning transmission electron microscopy (STEM) established that xl-mtTFA binds to the specific promoter-proximal site predominantly as a tetramer. Computer analysis of several previously characterized binding sites for xl-mtTFA revealed a fine structure consisting of two half-sites in a symmetrical orientation. The predominant sequence of this dyad symmetry motif shows homology to binding sites of sequence-specific HMG-box-containing proteins such as Sry and Lef-1. We suggest that bidirectional activation of transcription results from the fact that binding of a tetramer of xl-mtTFA permits symmetrical interactions with other components of the transcription machinery at the adjacent core promoters.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009698 Nucleoproteins Proteins conjugated with nucleic acids. Nucleoprotein
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005976 Glutaral One of the protein CROSS-LINKING REAGENTS that is used as a disinfectant for sterilization of heat-sensitive equipment and as a laboratory reagent, especially as a fixative. Glutaraldehyde,Cidex,Diswart,Gludesin,Glutardialdehyde,Glutarol,Korsolex,Novaruca,Sekumatic,Sonacide,Sporicidin
D006609 High Mobility Group Proteins A family of low-molecular weight, non-histone proteins found in chromatin. HMG Proteins,Calf Thymus Chromatin Protein HMG,High Mobility Group Chromosomal Proteins

Related Publications

I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
July 2001, Nucleic acids research,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
December 2001, Diabetes research and clinical practice,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
May 2000, Biochemical and biophysical research communications,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
May 1997, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
July 2002, Biochemical and biophysical research communications,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
June 1998, The EMBO journal,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
May 1994, Science (New York, N.Y.),
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
December 1999, The Journal of biological chemistry,
I Antoshechkin, and D F Bogenhagen, and I A Mastrangelo
July 1998, Biochemistry and molecular biology international,
Copied contents to your clipboard!