Effects of DNA topology on transformation efficiency of Bacillus subtilis ISW1214 by electroporation. 1997

M Ohse, and K Kawade, and H Kusaoke
Department of Applied Physics and Chemistry, Faculty of Engineering, Fukui University of Technology, Japan.

We report an investigation of electrotransformation by three different topological isomers, circular supercoiled (sc DNA), circular relaxed (cr DNA), and linearized (In DNA) forms of the plasmids pUB110 (4.5 kbp) and pBDR331T (12.6 kbp), of a Gram-positive bacterium, Bacillus subtilis ISW1214. Treatment of the sc DNA with calf thymus topoisomerase I removed the superhelicity and the DNA assumed the relaxed circular form. Treatment of sc DNA with restriction endonculease linearized the DNA. The transformation with the sc DNA of pUB110 resulted in the maximum efficiency of (2.6 +/- 0.6) x 10(5) transformants per microgram DNA higher than that (2.0 +/- 0.3) x 10(4) transformants per microgram DNA for the cr DNA, using the DNA concentration of 20 micrograms/ml at an electric field strength of 7 kV/cm and a capacitance of 10 microF with a single decayed pulse. The transformation efficiency (TE) for the ln DNA was zero. The variations of TE for different topological forms of DNA reflected their relative stability in the host cells. The molecular efficiency (ME, transformants per molecule) for sc DNA was nearly one order of magnitude greater for the lower molecular size of pUB110 DNA than that for the higher molecular size of pBDR331T DNA.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D004264 DNA Topoisomerases, Type I DNA TOPOISOMERASES that catalyze ATP-independent breakage of one of the two strands of DNA, passage of the unbroken strand through the break, and rejoining of the broken strand. DNA Topoisomerases, Type I enzymes reduce the topological stress in the DNA structure by relaxing the superhelical turns and knotted rings in the DNA helix. DNA Nicking-Closing Protein,DNA Relaxing Enzyme,DNA Relaxing Protein,DNA Topoisomerase,DNA Topoisomerase I,DNA Topoisomerase III,DNA Topoisomerase III alpha,DNA Topoisomerase III beta,DNA Untwisting Enzyme,DNA Untwisting Protein,TOP3 Topoisomerase,TOP3alpha,TOPO IIIalpha,Topo III,Topoisomerase III,Topoisomerase III beta,Topoisomerase IIIalpha,Topoisomerase IIIbeta,DNA Nicking-Closing Proteins,DNA Relaxing Enzymes,DNA Type 1 Topoisomerase,DNA Untwisting Enzymes,DNA Untwisting Proteins,Topoisomerase I,Type I DNA Topoisomerase,III beta, Topoisomerase,III, DNA Topoisomerase,III, Topo,III, Topoisomerase,IIIalpha, TOPO,IIIalpha, Topoisomerase,IIIbeta, Topoisomerase,Topoisomerase III, DNA,Topoisomerase, TOP3,beta, Topoisomerase III
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004270 DNA, Circular Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992) Circular DNA,Circular DNAs,DNAs, Circular
D004278 DNA, Superhelical Circular duplex DNA isolated from viruses, bacteria and mitochondria in supercoiled or supertwisted form. This superhelical DNA is endowed with free energy. During transcription, the magnitude of RNA initiation is proportional to the DNA superhelicity. DNA, Supercoiled,DNA, Supertwisted,Supercoiled DNA,Superhelical DNA,Supertwisted DNA

Related Publications

M Ohse, and K Kawade, and H Kusaoke
January 1997, Bioscience, biotechnology, and biochemistry,
M Ohse, and K Kawade, and H Kusaoke
August 1995, Bioscience, biotechnology, and biochemistry,
M Ohse, and K Kawade, and H Kusaoke
September 2006, Journal of microbiological methods,
M Ohse, and K Kawade, and H Kusaoke
January 1990, FEMS microbiology letters,
M Ohse, and K Kawade, and H Kusaoke
January 2021, Microorganisms,
M Ohse, and K Kawade, and H Kusaoke
March 1966, Nature,
M Ohse, and K Kawade, and H Kusaoke
June 1962, Biochemical and biophysical research communications,
M Ohse, and K Kawade, and H Kusaoke
January 1982, Doklady Akademii nauk SSSR,
M Ohse, and K Kawade, and H Kusaoke
December 2018, Bio-protocol,
M Ohse, and K Kawade, and H Kusaoke
January 1981, Molecular & general genetics : MGG,
Copied contents to your clipboard!