Determination of nerve conduction velocity distribution from sampled compound action potential signals. 1996

D Gu, and R E Gander, and E C Crichlow
Department of Electrical Engineering, University of Saskatchewan, Saskatoon, Canada.

The sampled compound action potential (CAP) data sequence was expressed as the circular convolution of the delay sequence and the sampled single fiber action potential (SFAP) data sequence. An algorithm, based on Hirose's method [1], was then developed to separate the delay sequence from the sampled CAP data sequence, and the nerve conduction velocity distribution (NCVD) was consequently calculated from the delay sequence. The NCVD was found to be the product of the amplitude of the SFAP and the number of fibers. Simulations show that the estimated results were in good agreement with the calculated results. Experiments were performed on ten sciatic nerves from five bullfrogs (Rana pipens) using two independent variables: interelectrode distance and stimulus current strength. The results estimated from CAP's recorded under each condition reflect the corresponding feature of NCVD of the condition. The advantage of the technique is to provide detailed information about both slow and fast conducting fibers. This technique also offers the possibility to directly calculate the nerve fiber diameter distribution from the sampled CAP data sequences.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012584 Sciatic Nerve A nerve which originates in the lumbar and sacral spinal cord (L4 to S3) and supplies motor and sensory innervation to the lower extremity. The sciatic nerve, which is the main continuation of the sacral plexus, is the largest nerve in the body. It has two major branches, the TIBIAL NERVE and the PERONEAL NERVE. Nerve, Sciatic,Nerves, Sciatic,Sciatic Nerves
D066298 In Vitro Techniques Methods to study reactions or processes taking place in an artificial environment outside the living organism. In Vitro Test,In Vitro Testing,In Vitro Tests,In Vitro as Topic,In Vitro,In Vitro Technique,In Vitro Testings,Technique, In Vitro,Techniques, In Vitro,Test, In Vitro,Testing, In Vitro,Testings, In Vitro,Tests, In Vitro,Vitro Testing, In

Related Publications

D Gu, and R E Gander, and E C Crichlow
January 1999, Medical engineering & physics,
D Gu, and R E Gander, and E C Crichlow
March 1997, Nihon rinsho. Japanese journal of clinical medicine,
D Gu, and R E Gander, and E C Crichlow
January 2018, IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society,
D Gu, and R E Gander, and E C Crichlow
March 1999, Electromyography and clinical neurophysiology,
D Gu, and R E Gander, and E C Crichlow
November 1963, Neurology,
D Gu, and R E Gander, and E C Crichlow
June 1979, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!