Expression of NMDA receptor-1 (NR1) and huntingtin in striatal neurons which colocalize somatostatin, neuropeptide Y, and NADPH diaphorase: a double-label histochemical and immunohistochemical study. 1997

U Kumar, and K Asotra, and S C Patel, and Y C Patel
McGill University Department of Medicine, Royal Victoria Hospital and the Montreal Neurological Institute, Quebec, Canada.

The subset of striatal neurons which colocalize SS/NPY/NADPH-d are selectively resistant to neurodegeneration in Huntington's Disease (HD) and to excitotoxic cell death induced experimentally with NMDA receptor (NMDAR) agonists. Here we have analyzed the expression of immunoreactive NMDAR-1 (NR1) subunit (as an index of NMDAR protein) and of huntingtin (the normal product of the HD gene) in primary cultures of rat striatum to see if differential expression of the two antigens in the subset of SS/NPY/NADPH-d and other striatal neurons can explain their selective resistance or vulnerability. Double-label histochemical and immunocytochemical studies were carried out using conventional and confocal laser scanning microscopy to characterize the cellular and subcellular expression of NR1 and SS, or NPY or bNOS, together with NADPH-d histochemistry. The percentages of cultured striatal neurons that were positive for NADPH-d, SS, NPY, bNOS, and NRI were, respectively, 3.8, 8.4, 10.2, 5.1, and 80%. The majority of striatal NADPH-d neurons coexpressed SS and NPY; 17% of SS-producing neurons were strongly positive for NR1; the remaining cells (approximately 80%) exhibited only weak NR1 expression. Comparable data were obtained for NPY-positive neurons, 15% of which colocalized NR1 strongly and 70-80% weakly. By double-label immunofluorescence, huntingtin was nonselectively expressed in virtually all striatal neurons including SS/NPY/NADPH-d neurons. These results show that the majority of striatal SS/NPY/NADPH-d neurons express NR1. The relative abundance of NR1 in SS/NPY/NADPH-d neurons, however, varies between a small subset of neurons that are receptor rich and the remainder that express low levels only and may determine susceptibility to NMDAR-mediated neurotoxicity. Huntingtin is nonselectively expressed in virtually all striatal neurons and does not appear to be a determinant of the selective resistance of normal striatal SS/NPY/NADPH-d neurons to NMDA toxicity.

UI MeSH Term Description Entries
D009252 NADPH Dehydrogenase A flavoprotein that reversibly oxidizes NADPH to NADP and a reduced acceptor. EC 1.6.99.1. NADP Dehydrogenase,NADP Diaphorase,NADPH Diaphorase,Old Yellow Enzyme,TPN Diaphorase,Dehydrogenase, NADP,Dehydrogenase, NADPH,Diaphorase, NADP,Diaphorase, NADPH,Diaphorase, TPN,Enzyme, Old Yellow
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry

Related Publications

U Kumar, and K Asotra, and S C Patel, and Y C Patel
June 1990, Annals of neurology,
U Kumar, and K Asotra, and S C Patel, and Y C Patel
January 1990, Neuroscience letters,
U Kumar, and K Asotra, and S C Patel, and Y C Patel
February 1988, Annals of neurology,
U Kumar, and K Asotra, and S C Patel, and Y C Patel
October 1994, Gastroenterology,
U Kumar, and K Asotra, and S C Patel, and Y C Patel
February 1998, International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience,
U Kumar, and K Asotra, and S C Patel, and Y C Patel
January 1995, The Journal of comparative neurology,
Copied contents to your clipboard!