Na+/K(+)-ATPase activity in vascular smooth muscle from streptozotocin diabetic rat. 1997

J M Smith, and D J Paulson, and S M Solar
Department of Physiology, Midwestern University, Downers Grove, IL 60515, USA.

OBJECTIVE Insulin-deficient diabetes impairs carbohydrate metabolism in a variety of tissues. Vascular smooth muscle may be susceptible to the diabetes-induced disturbance in glycolysis since Na+/K(+)-ATPase in this tissue preferentially utilizes ATP generated by glycolysis. The purpose of this study was to determine if chronic exposure to the metabolic alterations associated with insulin-deficient diabetes directly inhibited Na+/K(+)-ATPase activity, or its regulation, in vascular smooth muscle. METHODS Diabetes was induced by intravenous administration of streptozotocin (60 mg/kg). After 12 weeks, Na+/K(+)-ATPase activity in aorta and superior mesenteric artery was evaluated under a variety of conditions. Na+/K(+)-ATPase was estimated by measuring the influx of rubidium-86 (86Rb) in the presence or absence of the Na+/K(+)-ATPase inhibitor, ouabain. The metabolism of [3H]glucose and [14C]glucose was used to estimate glycolysis or glucose oxidation, respectively. RESULTS Glycolysis and glucose oxidation were decreased in aortic smooth muscle (27 and 34%, respectively). An intact endothelium was associated with a marked decrease in ouabain-sensitive (pump-mediated) 86Rb uptake in diabetic aorta. However, ouabain-sensitive 86Rb uptake was similar in de-endothelialized aorta and superior mesenteric artery from diabetic and non-diabetic rats under both unstimulated conditions and during maximal stimulation. Removal of glucose or oxygen reduced ouabain-sensitive 86Rb uptake to a similar extent in both groups. In contrast, the receptor-mediated stimulation of ouabain-sensitive 86Rb uptake by insulin was decreased. CONCLUSIONS These results suggest that intrinsic Na+/K(+)-ATPase activity is not diminished in diabetic vascular smooth muscle under physiological conditions and that the impairment of cellular metabolism in diabetic blood vessels does not limit stimulation of Na+/K(+)-ATPase activity. However, modulation of Na+/K(+)-ATPase activity by endothelial factors or insulin appears to be altered in aorta from diabetic rats.

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002149 Energy Intake Total number of calories taken in daily whether ingested or by parenteral routes. Caloric Intake,Calorie Intake,Intake, Calorie,Intake, Energy
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J M Smith, and D J Paulson, and S M Solar
April 1986, The American journal of physiology,
J M Smith, and D J Paulson, and S M Solar
February 1986, Scandinavian journal of clinical and laboratory investigation,
J M Smith, and D J Paulson, and S M Solar
March 1983, The American journal of physiology,
J M Smith, and D J Paulson, and S M Solar
January 2019, Current topics in membranes,
J M Smith, and D J Paulson, and S M Solar
January 1979, Acta biologica et medica Germanica,
J M Smith, and D J Paulson, and S M Solar
March 1993, Diabetologia,
J M Smith, and D J Paulson, and S M Solar
September 1983, The American journal of physiology,
J M Smith, and D J Paulson, and S M Solar
January 1978, Blood vessels,
J M Smith, and D J Paulson, and S M Solar
August 1983, Circulation research,
J M Smith, and D J Paulson, and S M Solar
June 1996, European journal of pharmacology,
Copied contents to your clipboard!