Regulation of G protein-coupled receptor kinases by calmodulin and localization of the calmodulin binding domain. 1997

A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
Department of Biochemistry, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.

G protein-coupled receptor kinases (GRKs) specifically phosphorylate and regulate the activated form of multiple G protein-coupled receptors. Recent studies have revealed that GRKs are also subject to regulation. In this regard, GRK2 and GRK5 can be phosphorylated and either activated or inhibited, respectively, by protein kinase C. Here we demonstrate that calmodulin, another mediator of calcium signaling, is a potent inhibitor of GRK activity with a selectivity for GRK5 (IC50 approximately 50 nM) > GRK6 >> GRK2 (IC50 approximately 2 microM) >> GRK1. Calmodulin inhibition of GRK5 is mediated via a reduced ability of the kinase to bind to both receptor and phospholipid. Interestingly, calmodulin also activates autophosphorylation of GRK5 at sites distinct from the two major autophosphorylation sites on GRK5. Moreover, calmodulin-stimulated autophosphorylation directly inhibits GRK5 interaction with receptor even in the absence of calmodulin. Using glutathione S-transferase-GRK5 fusion proteins either to inhibit calmodulin-stimulated autophosphorylation or to bind directly to calmodulin, we determined that an amino-terminal domain of GRK5 (amino acids 20-39) is sufficient for calmodulin binding. This domain is abundant in basic and hydrophobic residues, characteristics typical of calmodulin binding sites, and is highly conserved in GRK4, GRK5, and GRK6. These studies suggest that calmodulin may serve a general role in mediating calcium-dependent regulation of GRK activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus

Related Publications

A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
February 2000, Trends in cardiovascular medicine,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
March 1999, The Journal of biological chemistry,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
January 2013, Current medicinal chemistry,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
October 1996, Canadian journal of physiology and pharmacology,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
January 2010, Developmental biology,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
January 1995, Vitamins and hormones,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
August 1998, The Journal of biological chemistry,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
August 1993, Cell,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
April 1996, Kidney international,
A N Pronin, and D K Satpaev, and V Z Slepak, and J L Benovic
August 1994, Journal of neurochemistry,
Copied contents to your clipboard!