Critical glutamic acid residues affecting the mechanism and nucleotide specificity of Vibrio harveyi aldehyde dehydrogenase. 1997

M Vedadi, and E Meighen
Department of Biochemistry, McGill University, Montreal, Canada.

Fatty aldehyde dehydrogenase (ALDH) from the luminescent marine bacterium, Vibrio harveyi, differs from other ALDHs in its unique specificity and high affinity for NADP+. Two glutamic acid residues, Glu253 and Glu377, which are highly conserved in ALDHs, were investigated in the present study. Mutation of Glu253 to Ala decreased the kcat for ALDH activity by over four orders of magnitude without a significant change in the K(m) values for substrates or the ability to interact with nucleotides. Both thioesterase activity and a pre-steady-state burst of NAD(P)H were also eliminated, implicating Glu253 in promoting the nucleophilicity of the cysteine residue(Cys289) involved in forming the thiohemiacetal intermediate in the enzyme mechanism. Mutation of Glu377 to Gln (E377Q mutant) selectively decreased the kcat for NAD(+)-dependent ALDH activity (> 10(2)-fold) compared to only a 6-fold loss in NADP(+)-dependent activity without comparable changes to the K(m) values for substrates. Consequently, the E377Q mutant had a very high specificity for NADP+(kcat/K(m) > 10(3) of that for NAD+) which was over 20 times higher than that of the wild-type ALDH. Although a pre-steady-state burst of NAD(P)H was eliminated by this mutation, thioesterase activity was completely retained. Using [1-2H]acetaldehyde as a substrate, a significant deuterium isotope effect was observed, implicating Glu377 in the hydride transfer step and not in acylation or release of the acyl group from the cysteine nucleophile. The increase in specificity of the E377Q mutant for NADP+ is consistent with a change in the rate-limiting step determining kcat from nucleotide-dependent NAD(P)H dissociation to hydride transfer. The results provide biochemical evidence that the two highly conserved Glu residues are involved in different functions in the active site of V. harveyi ALDH.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D009711 Nucleotides The monomeric units from which DNA or RNA polymers are constructed. They consist of a purine or pyrimidine base, a pentose sugar, and a phosphate group. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Nucleotide
D002855 Chromatography, Thin Layer Chromatography on thin layers of adsorbents rather than in columns. The adsorbent can be alumina, silica gel, silicates, charcoals, or cellulose. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Thin-Layer,Thin Layer Chromatography,Chromatographies, Thin Layer,Chromatographies, Thin-Layer,Thin Layer Chromatographies,Thin-Layer Chromatographies,Thin-Layer Chromatography
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000444 Aldehyde Dehydrogenase An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70. D-Glucuronolactone Dehydrogenase,Aldehyde Dehydrogenase (NAD(+)),Aldehyde Dehydrogenase E1,Aldehyde Dehydrogenase E2,Aldehyde-NAD Oxidoreductase,Aldehyde NAD Oxidoreductase,D Glucuronolactone Dehydrogenase,Dehydrogenase, Aldehyde,Dehydrogenase, D-Glucuronolactone
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M Vedadi, and E Meighen
February 1960, Archives of biochemistry and biophysics,
M Vedadi, and E Meighen
February 1962, The Journal of biological chemistry,
M Vedadi, and E Meighen
January 2002, Journal of applied microbiology,
Copied contents to your clipboard!