Inhibition of poly(ADP-ribose) polymerase by arsenite. 1997

J W Yager, and J K Wiencke
Environment Group, Electric Power Research Institute, Palo Alto, CA 94303, USA.

Inorganic arsenic is considered a human carcinogen based principally on epidemiological evidence. Unlike most initiating chemicals, arsenic is inactive or extremely weak in its ability to directly induce gene mutations. Arsenite has been shown, however, to enhance mutagenicity when present with other agents such as UV radiation. Synergistic potentiation of chromosomal damage has been shown with co-treatment with DNA-crosslinking agents. Arsenite at low concentrations is known to be highly selective in reacting with closely spaced (vicinal) dithiol groups in proteins. Poly(ADP-ribose) polymerase (PARP) is known to contain such vicinal dithiol groups. Stimulation of PARP is an immediate response of eukaryotic cells to DNA strand breaks and has been implicated in DNA repair. The effect of treatment with sodium arsenite on PARP activity was assessed as follows: Molt-3 cells (a human T-cell lymphoma-derived cell line) in culture were treated for 24 h with concentrations of sodium arsenite ranging from 2.5 up to 25 microM. Speciation of inorganic arsenic and cell viability were determined. Cell cycle kinetics were measured by flow cytometry. Poly(ADP-ribose) synthesis was assayed using a palindromic decameric deoxynucleotide to stimulate enzyme activity. Results show that arsenite decreases PARP activity in a dose-dependent manner with an approximately 50% decrease in enzyme activity at 10 microM arsenite and 80% viability. The percent of cells in S-phase increases with increasing concentration of arsenite. These results provide further indication that arsenite may potentiate genetic damage through reaction with dithiols in DNA repair proteins such as PARP, perhaps resulting in interference with normal repair function.

UI MeSH Term Description Entries
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067856 Poly(ADP-ribose) Polymerase Inhibitors Chemicals and drugs that inhibit the action of POLY(ADP-RIBOSE)POLYMERASES. Inhibitors of Poly(ADP-ribose) Polymerase,PARP Inhibitor,Poly(ADP-Ribose) Polymerase Inhibitor,Poly(ADP-ribosylation) Inhibitor,Inhibitors of Poly(ADP-ribose) Polymerases,PARP Inhibitors,Poly(ADP-ribosylation) Inhibitors,Inhibitor, PARP,Inhibitors, PARP
D013723 Teratogens An agent that causes the production of physical defects in the developing embryo. Embryotoxins,Fetotoxins,Teratogen
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D018053 Arsenites Inorganic salts or organic esters of arsenious acid.

Related Publications

J W Yager, and J K Wiencke
March 2009, The Journal of biological chemistry,
J W Yager, and J K Wiencke
December 2006, Biochemical and biophysical research communications,
J W Yager, and J K Wiencke
January 2005, Current medicinal chemistry,
J W Yager, and J K Wiencke
August 2006, Current opinion in pharmacology,
J W Yager, and J K Wiencke
July 2005, Pharmacological research,
J W Yager, and J K Wiencke
April 1999, Molecular and cellular biology,
J W Yager, and J K Wiencke
October 2023, Basic & clinical pharmacology & toxicology,
J W Yager, and J K Wiencke
May 2021, Genes, chromosomes & cancer,
J W Yager, and J K Wiencke
March 2004, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!