Studies to determine if rat liver contains multiple chain elongating enzymes. 1997

D L Luthria, and H Sprecher
Department of Medical Biochemistry, The Ohio State University, Columbus 43210, USA.

According to the revised pathways of polyunsaturated fatty acid biosynthesis three, rather than two acids, must be chain elongated for converting linoleate and linolenate, respectively, to 22:5(n-6) and 22:6(n-3) (Sprecher et al. (1995) J. Lipid Res. 36, 2471-2477). The present study was undertaken to determine whether microsomes contained chain-length specific chain-elongating enzymes and, secondly, whether reaction rates for any of these reactions might be rate limiting in the synthesis of 24:5(n-6) and 24:6(n-3), which are the immediate precursors of 22:5(n-6) and 22:6(n-3). Rates of total chain elongation products produced from both 18:4(n-3) and 20:5(n-3) were about 3 nmol/min/mg of microsomal protein while only about 0.5 nmol/min/mg of 24:5(n-3) plus 24:6(n-3) was synthesized from 22:5(n-3). The rate of 24:5(n-3) synthesis was similar to that for the desaturation of 24:5(n-3), at position 6, to yield 24:6(n-3) (Geiger et al. (1993) Biochim. Biophys. Acta 1170, 137-142). The results suggest that the last chain elongation step in unsaturated fatty acid biosynthesis may be equally regulatory in governing the synthesis of fatty acids as is desaturation at position 6. When an enzyme saturating level of [1-(14)C]18:4(n-3) was incubated with increasing amounts of 18:3(n-6) there was a decrease in the production [1-(14)C]20:4(n-3). In a similar way it was observed that 18:4(n-3) inhibited the chain elongation of [1-(14)C]18:3(n-6). Identical cross-over inhibitory studies, using 20:4(n-6) and 20:5(n-3), as well as 22:4(n-6) and 22:5(n-3) also suggested that microsomes contain chain length specific chain-elongating enzymes. This conclusion was further supported by the finding that neither 20:5(n-3) or 22:5(n-3) inhibited the chain elongation of [1-(14)C]18:4(n-3). However, 18:4(n-3), and to a lesser degree, 22:5(n-3) did inhibit the chain elongation of [1-(14)C]20:5(n-3). This latter finding suggests that 18:4(n-3) and 20:5(n-3) might interact with the enzyme that chain elongates 20:5(n-3) to depress its ability to synthesize 22:5(n-3). Our results are most consistent with the presence of multiple chain-elongating enzymes, but a more definitive answer requires the purification of these membrane-bound proteins. In addition our results suggest that the channeling of acids between enzymes in the endoplasmic reticulum may play an important role in regulating the biosynthesis of unsaturated fatty acids.

UI MeSH Term Description Entries
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D005231 Fatty Acids, Unsaturated FATTY ACIDS in which the carbon chain contains one or more double or triple carbon-carbon bonds. Fatty Acids, Polyunsaturated,Polyunsaturated Fatty Acid,Unsaturated Fatty Acid,Polyunsaturated Fatty Acids,Acid, Polyunsaturated Fatty,Acid, Unsaturated Fatty,Acids, Polyunsaturated Fatty,Acids, Unsaturated Fatty,Fatty Acid, Polyunsaturated,Fatty Acid, Unsaturated,Unsaturated Fatty Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001095 Arachidonic Acids Eicosatetraenoic Acids,Acids, Arachidonic,Acids, Eicosatetraenoic
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D L Luthria, and H Sprecher
October 1993, Biochimica et biophysica acta,
D L Luthria, and H Sprecher
October 1999, Bioscience, biotechnology, and biochemistry,
D L Luthria, and H Sprecher
February 2003, Natural product reports,
D L Luthria, and H Sprecher
January 2006, Chemical record (New York, N.Y.),
D L Luthria, and H Sprecher
August 2001, Bioorganic & medicinal chemistry letters,
D L Luthria, and H Sprecher
October 2004, Bioscience, biotechnology, and biochemistry,
D L Luthria, and H Sprecher
October 1968, The Biochemical journal,
D L Luthria, and H Sprecher
September 1961, The Journal of biological chemistry,
Copied contents to your clipboard!