Glial and endothelial cell response to a fetal transplant of purified neurons. 1997

S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
INSERM Unité 421, IM3, Faculte de Médecine, Créteil, France.

Astrocytes, microglia and endothelial cells display very specific phenotypic characteristics in the intact adult CNS, which appear quite versatile when grown in culture without neurons. Indirect evidence from in vitro co-culture studies and analysis of the effects of specific neuronal removal in vivo, does accordingly favour a role of neurons for the phenotypic repression of these cells in the intact brain. In order to provide more direct evidence for such neuronal influence, we attempted to induce, in the rat brain, a reversal of the post-lesional activation of astrocytes, microglia and endothelial cells by transplantation of fetal neurons purified by immunopanning. Host microglial cells which have been activated by the lesion process, penetrated the neuronal graft during the few days after the transplantation. Reactive astrocytes began to appear in the lesioned parenchyma and gathered around the transplant. Thereafter they first sent their processes in the direction of the neuronal graft, before they migrated into the graft a few days later. At this time, which was at the end of the first week post-transplantation, the host endothelial cells sprouted "streamers" of basal lamina within the graft forming small capillaries. During the second week post-transplantation, numerous astrocytes and microglial cells, both displaying a reactive hypertrophied morphology, were observed throughout the grafts. Finally, by the end of the first month, the activated cells differentiated towards a quiescent, resting morphology. At this time the grafts contained a vascular network with morphological characteristics comparable to those observed in the intact brain parenchyma. The results indicate that the interaction of activated astroglia and microglia and endothelial cells with neurons causes the cells to re-differentiate and regain phenotypic features characteristic of intact brain parenchyma, strongly suggesting that neurons play an essential role in the phenotypic restriction of glial and endothelial cells in the adult central nervous system.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D004727 Endothelium A layer of epithelium that lines the heart, blood vessels (ENDOTHELIUM, VASCULAR), lymph vessels (ENDOTHELIUM, LYMPHATIC), and the serous cavities of the body. Endotheliums
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016332 Fetal Tissue Transplantation Transference of fetal tissue between individuals of the same species or between individuals of different species. Grafting, Fetal Tissue,Transplantation, Fetal Tissue,Fetal Tissue Donation,Donation, Fetal Tissue,Donations, Fetal Tissue,Fetal Tissue Donations,Fetal Tissue Grafting,Fetal Tissue Graftings,Fetal Tissue Transplantations,Graftings, Fetal Tissue,Tissue Donation, Fetal,Tissue Donations, Fetal,Tissue Grafting, Fetal,Tissue Graftings, Fetal,Tissue Transplantation, Fetal,Tissue Transplantations, Fetal,Transplantations, Fetal Tissue
D016380 Brain Tissue Transplantation Transference of brain tissue, either from a fetus or from a born individual, between individuals of the same species or between individuals of different species. Grafting, Brain Tissue,Transplantation, Brain Tissue,Brain Tissue Grafting,Brain Tissue Graftings,Brain Tissue Transplantations,Graftings, Brain Tissue,Tissue Grafting, Brain,Tissue Graftings, Brain,Tissue Transplantation, Brain,Tissue Transplantations, Brain,Transplantations, Brain Tissue
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
March 1971, Brain research,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
January 1982, Developmental biology,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
January 2009, Molecular vision,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
October 1997, Brain research. Brain research protocols,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
March 2006, Investigative ophthalmology & visual science,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
October 2020, Stem cell reports,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
January 1983, Journal of neuroscience research,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
January 2012, Methods in molecular biology (Clifton, N.J.),
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
March 1992, Analytical biochemistry,
S Rostaing-Rigattieri, and R Flores-Guevara, and M Peschanski, and J Cadusseau
February 1986, Brain research,
Copied contents to your clipboard!