Central c-Fos expression in neonatal and adult rats after subcutaneous injection of hypertonic saline. 1997

L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
Department of Neuroscience, University of Pittsburgh, PA 15260, USA.

Centrally-mediated responses to plasma hyperosmolality include compensatory drinking and pituitary secretion of vasopressin and oxytocin in both adult and neonatal rats. However, the anorexia that is produced by plasma hyperosmolality in adult rats is not evident in neonates, perhaps due to functional immaturity of osmoresponsive hindbrain circuits. To examine this possibility, the present study compared treatment-induced brain expression of the immediate-early gene product c-Fos as a marker of neural activation in adult and two-day-old rats after subcutaneous injection of 2 M NaCl (0.1 ml/10 g body weight). This treatment produced marked hypernatremia in adult and two-day-old rats without altering plasma volume. Several brain regions (including components of the lamina terminalis, the paraventricular and supraoptic nuclei of the hypothalamus, and the area postrema) were activated to express c-Fos similarly in adult and two-day-old rats after 2 M NaCl injection, consistent with previous reports implicating a subset of these regions in osmotically-stimulated drinking and neurohypophyseal secretion. In contrast, other areas of the brain that were activated to express c-Fos in adult rats after 2 M NaCl injection were not activated in neonates: these areas included the central nucleus of the amygdala, the parabrachial nucleus and catecholamine cell groups within the caudal medulla. This study demonstrates that certain brain regions that are osmoresponsive in adult rats (as defined by induced c-Fos expression) are not osmoresponsive in two-day-old rats. When considered in the context of known differences between the osmoregulatory capacities of adult and neonatal rats, our results are consistent with the idea that osmoresponsive forebrain centres are primarily involved in osmotically-stimulated compensatory drinking and neurohypophyseal secretion, whereas osmoresponsive regions of the hindbrain are important for concomitant inhibition of feeding and gastric emptying.

UI MeSH Term Description Entries
D007279 Injections, Subcutaneous Forceful administration under the skin of liquid medication, nutrient, or other fluid through a hollow needle piercing the skin. Subcutaneous Injections,Injection, Subcutaneous,Subcutaneous Injection
D008297 Male Males
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017552 Solitary Nucleus GRAY MATTER located in the dorsomedial part of the MEDULLA OBLONGATA associated with the solitary tract. The solitary nucleus receives inputs from most organ systems including the terminations of the facial, glossopharyngeal, and vagus nerves. It is a major coordinator of AUTONOMIC NERVOUS SYSTEM regulation of cardiovascular, respiratory, gustatory, gastrointestinal, and chemoreceptive aspects of HOMEOSTASIS. The solitary nucleus is also notable for the large number of NEUROTRANSMITTERS which are found therein. Nucleus Solitarius,Nuclei Tractus Solitarii,Nucleus Tractus Solitarii,Nucleus of Solitary Tract,Nucleus of Tractus Solitarius,Nucleus of the Solitary Tract,Solitary Nuclear Complex,Solitary Tract Nucleus,Complex, Solitary Nuclear,Complices, Solitary Nuclear,Nuclear Complex, Solitary,Nuclear Complices, Solitary,Nuclei Tractus Solitarius,Nucleus Tractus Solitarius,Nucleus, Solitary,Nucleus, Solitary Tract,Solitarii, Nuclei Tractus,Solitarius Nucleus, Tractus,Solitarius, Nuclei Tractus,Solitary Nuclear Complices,Tractus Solitarii, Nuclei,Tractus Solitarius Nucleus,Tractus Solitarius, Nuclei

Related Publications

L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
February 1999, The American journal of physiology,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
March 1997, The American journal of physiology,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
December 1993, Neuroscience letters,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
May 1996, Brain research. Molecular brain research,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
July 2005, Basic & clinical pharmacology & toxicology,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
August 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
August 2013, Aesthetic plastic surgery,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
January 2018, Methods in molecular biology (Clifton, N.J.),
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
August 1972, The New England journal of medicine,
L Rinaman, and E M Stricker, and G E Hoffman, and J G Verbalis
January 2015, Brain research,
Copied contents to your clipboard!