A novel SR-related protein specifically interacts with the carboxy-terminal domain (CTD) of RNA polymerase II through a conserved interaction domain. 1997

S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
Institut für Molekularbiologie, Abteilung II, Universität Zürich, Switzerland.

The largest subunit of the RNA polymerase II (pol II) contains at the carboxy-terminus a peculiar repetitive sequence that consists of 52 tandem repeats of the consensus motif Tyr-Ser-Pro-Thr-Ser-Pro-Ser, referred to as the C-terminal domain (CTD). Upon transcriptional initiation/promoter clearance, the CTD becomes extensively phosphorylated and apparently remains so during elongation. While the underphosphorylated CTD plays a role in transcriptional initiation, recent evidence couples the highly phosphorylated CTD to RNA processing, namely polyadenylation and splicing. Using a yeast two-hybrid screen, we have selected for human proteins that interact with the CTD of RNA polymerase II. The CTD-GAL fusion protein used as a bait is highly phosphorylated in yeast and, accordingly, we did not isolate proteins implicated in transcriptional regulation but rather proteins with possible roles in RNA splicing. One major cDNA clone isolated this way encodes SRrp129/CASP11, a protein that contains a conserved CTD-interaction domain at the C-terminus and an internal serine-arginine rich domain (SR domain). Proteins of the SR family have been implicated in RNA splicing, notably in the regulation of alternative splicing. Thus we consider it likely that SRrp129 is an auxiliary splice factor. We also improved our method to quickly map domains involved in protein-protein interaction (Stagljar et al., 1996, BioTechniques 21, 430-432). Instead of using sonication for the production of a random DNA fragment library, we took advantage of the fact that DNAse I in the presence of manganese (II) produces double strand rather than single strand DNA breaks. The DNA fragment library of the SRrp129 clone was then used in the yeast two-hybrid system to identify the 100-amino acid domain that interacts with the CTD of RNA polymerase II.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D010750 Phosphoproteins Phosphoprotein
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000068103 Serine-Arginine Splicing Factors A family of regulatory factors essential for constitutive and alternative splicing in RNA metabolism. SR-Rich Splicing Proteins,Serine-Arginine-Rich Splicing Proteins,Factors, Serine-Arginine Splicing,Proteins, SR-Rich Splicing,Proteins, Serine-Arginine-Rich Splicing,SR Rich Splicing Proteins,Serine Arginine Rich Splicing Proteins,Serine Arginine Splicing Factors,Splicing Factors, Serine-Arginine,Splicing Proteins, SR-Rich,Splicing Proteins, Serine-Arginine-Rich
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D012319 RNA Polymerase II A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6. DNA-Dependent RNA Polymerase II,RNA Pol II,RNA Polymerase B,DNA Dependent RNA Polymerase II
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein

Related Publications

S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
November 2013, Chemical reviews,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
August 2005, Biochemical and biophysical research communications,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
December 2023, International journal of biological macromolecules,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
September 2018, Nature structural & molecular biology,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
November 2005, Proceedings of the National Academy of Sciences of the United States of America,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
October 2003, European journal of biochemistry,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
June 2007, Experimental & molecular medicine,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
May 2017, Current genetics,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
January 1999, Biochemistry and cell biology = Biochimie et biologie cellulaire,
S Tanner, and I Stagljar, and O Georgiev, and W Schaffner, and J P Bourquin
November 2006, Molecular and biochemical parasitology,
Copied contents to your clipboard!