Fine structure of the olfactory epithelium in the goldfish, Carassius auratus. A study of retrograde degeneration. 1977

M Ichikawa, and K Ueda

The fine structure of the goldfish olfactory epithelium was studied by transmission and scanning electron microscopy. Six different cell types were distinguished. Identification of the olfactory receptor cell was accomplished by use of retrograde degeneration studies. Two morphologically distinct types of olfactory receptor cells were identified: one type bears radially oriented cilia (Type I cell); the other type bears microvilli (Type II cell). The other four cell types were not identifiable as olfactory receptor cells: they are ciliated cells (Type III), rod-shaped cells (Type IV), supporting cells (Type V), and basal cells (Type VI).

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009831 Olfactory Mucosa That portion of the nasal mucosa containing the sensory nerve endings for SMELL, located at the dome of each NASAL CAVITY. The yellow-brownish olfactory epithelium consists of OLFACTORY RECEPTOR NEURONS; brush cells; STEM CELLS; and the associated olfactory glands. Olfactory Epithelium,Olfactory Membrane,Epithelium, Olfactory,Membrane, Olfactory,Membranes, Olfactory,Mucosa, Olfactory,Olfactory Membranes
D002923 Cilia Populations of thin, motile processes found covering the surface of ciliates (CILIOPHORA) or the free surface of the cells making up ciliated EPITHELIUM. Each cilium arises from a basic granule in the superficial layer of CYTOPLASM. The movement of cilia propels ciliates through the liquid in which they live. The movement of cilia on a ciliated epithelium serves to propel a surface layer of mucus or fluid. (King & Stansfield, A Dictionary of Genetics, 4th ed) Motile Cilia,Motile Cilium,Nodal Cilia,Nodal Cilium,Primary Cilia,Primary Cilium,Cilium,Cilia, Motile,Cilia, Nodal,Cilia, Primary,Cilium, Motile,Cilium, Nodal,Cilium, Primary
D003530 Cyprinidae A family of freshwater fish comprising the minnows or CARPS. Barbels,Chub,Dace,Minnows,Roach (Fish),Shiner,Tench,Tinca,Barbus,Rutilus rutilus,Tinca tinca,Chubs,Shiners,Tinca tincas,tinca, Tinca
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012183 Retrograde Degeneration Pathologic changes that occur in the axon and cell body of a neuron proximal to an axonal lesion. The process is characterized by central chromatolysis which features flattening and displacement of the nucleus, loss of Nissl bodies, and cellular edema. Central chromatolysis primarily occurs in lower motor neurons. Axon Reaction,Nissl Degeneration,Retrograde Degeneration, Transneuronal,Axonal Reaction,Trans-Synaptic Degeneration,Axon Reactions,Axonal Reactions,Degeneration, Nissl,Degeneration, Retrograde,Degeneration, Trans-Synaptic,Degeneration, Transneuronal Retrograde,Degenerations, Retrograde,Degenerations, Trans-Synaptic,Degenerations, Transneuronal Retrograde,Reaction, Axon,Reaction, Axonal,Reactions, Axon,Reactions, Axonal,Retrograde Degenerations,Retrograde Degenerations, Transneuronal,Trans Synaptic Degeneration,Trans-Synaptic Degenerations,Transneuronal Retrograde Degeneration,Transneuronal Retrograde Degenerations

Related Publications

M Ichikawa, and K Ueda
October 1976, Brain research,
M Ichikawa, and K Ueda
April 1979, The Journal of comparative neurology,
M Ichikawa, and K Ueda
May 2003, The Journal of experimental biology,
M Ichikawa, and K Ueda
February 1979, Cell and tissue research,
M Ichikawa, and K Ueda
December 1982, The Journal of comparative neurology,
M Ichikawa, and K Ueda
May 2021, Journal of hazardous materials,
M Ichikawa, and K Ueda
January 1984, Cell and tissue research,
M Ichikawa, and K Ueda
January 1967, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
M Ichikawa, and K Ueda
January 1965, Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948),
Copied contents to your clipboard!