Colchicine effects on meiosis in the male mouse. I. Meiotic prophase: synaptic arrest, univalents, loss of damaged spermatocytes and a possible checkpoint at pachytene. 1997

J H Tepperberg, and M J Moses, and J Nath
Cytogenetics Laboratory, Laboratory Corporation of America, RTP, NC 22709, USA.

Antimitotic agents administered at the time of synapsis (leptotene/zygotene) have been shown to induce synaptic abnormalities visible during pachytene in the male mouse. The object of this study was to test the hypothesis that cells with relatively large amounts of colchicine-induced damage to the synaptonemal complex (SC) are eliminated from prophase whereas cells with relatively small amounts of SC damage proceed through to the end of prophase. Male mice were injected with tritiated thymidine to mark a cohort of spermatocytes at premeiotic S-phase for tracking through pachytene. Forty-eight hours later, when those cells were at leptotene/zygotene, colchicine was administered intratesticularly. Whole-mount SC spreads were made from animals sacrificed at various times following colchicine administration, and prepared for autoradiography. The marked cells were examined by light and electron microscopy and the kind and number of synaptic abnormalities were scored throughout pachytene. Colchicine-induced SC damage included single axial elements (univalents), together with partially synapsed and nonhomologously synapsed SCs. The amount of SC damage (amount and type per cell and frequency of cells with damage) scored at early pachytene exceeded by three- to fivefold the amount at late pachytene. This is consistent with spermatogenic cell loss from the seminiferous tubule via colchicine-induced destruction of Sertoli cell microtubules. The presence of spermatocytes with no more than four autosomal univalents at late pachytene indicates that some cells with low amounts of synaptic damage progress to the end of pachytene. The loss of the most severely damaged cells may represent a meiotic checkpoint at early pachytene in the male mouse.

UI MeSH Term Description Entries
D008297 Male Males
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012708 Sertoli Cells Supporting cells projecting inward from the basement membrane of SEMINIFEROUS TUBULES. They surround and nourish the developing male germ cells and secrete the ANDROGEN-BINDING PROTEIN and hormones such as ANTI-MULLERIAN HORMONE. The tight junctions of Sertoli cells with the SPERMATOGONIA and SPERMATOCYTES provide a BLOOD-TESTIS BARRIER. Sertoli Cell,Cell, Sertoli,Cells, Sertoli
D013090 Spermatocytes Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS. Spermiocytes,Spermatocyte,Spermiocyte
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis

Related Publications

J H Tepperberg, and M J Moses, and J Nath
February 2022, Toxicology,
J H Tepperberg, and M J Moses, and J Nath
January 2008, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
J H Tepperberg, and M J Moses, and J Nath
January 1967, Atti della Accademia dei fisiocritici in Siena. Sezione medico-fisica,
J H Tepperberg, and M J Moses, and J Nath
October 2008, Chromosoma,
J H Tepperberg, and M J Moses, and J Nath
May 2014, Biological research,
J H Tepperberg, and M J Moses, and J Nath
July 2006, Reproduction (Cambridge, England),
Copied contents to your clipboard!