Sonic hedgehog promotes rod photoreceptor differentiation in mammalian retinal cells in vitro. 1997

E M Levine, and H Roelink, and J Turner, and T A Reh
Department of Biological Structure, University of Washington, Seattle, Washington 98195, USA.

The hedgehog gene family encodes secreted proteins important in many developmental patterning events in both vertebrates and invertebrates. In the Drosophila eye disk, hedgehog controls the progression of photoreceptor differentiation in the morphogenetic furrow. To investigate whether hedgehog proteins are also involved in the development of the vertebrate retina at stages of photoreceptor differentiation, we analyzed expression of the three known vertebrate hedgehog genes. We found that Sonic hedgehog and Desert hedgehog are expressed in the developing retina, albeit at very low levels, whereas Indian hedgehog (Ihh) is expressed in the developing and mature retinal pigmented epithelium, beginning at embryonic day 13. To determine whether hedgehog proteins have activities on developing retinal cells, we used an in vitro system in which much of retinal histogenesis is recapitulated. N-terminal recombinant Sonic Hedgehog protein (SHH-N) was added to rat retinal cultures for 3-12 d, and the numbers of retinal cells of various phenotypes were analyzed by immunohistochemistry. We found that SHH-N caused a transient increase in the number of retinal progenitor cells, and a 2- to 10-fold increase in the number of photoreceptors differentiating in the cultures when analyzed with three different photoreceptor-specific antigens. In contrast, the numbers of retinal ganglion cells and amacrine cells were similar to those in control cultures. These results show that Hedgehog proteins can regulate mitogenesis and photoreceptor differentiation in the vertebrate retina, and Ihh is a candidate factor from the pigmented epithelium to promote retinal progenitor proliferation and photoreceptor differentiation.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004627 Embryonic Induction The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS). Embryonic Inductions,Induction, Embryonic,Inductions, Embryonic
D005123 Eye The organ of sight constituting a pair of globular organs made up of a three-layered roughly spherical structure specialized for receiving and responding to light. Eyes
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal

Related Publications

E M Levine, and H Roelink, and J Turner, and T A Reh
October 2006, Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association,
E M Levine, and H Roelink, and J Turner, and T A Reh
October 2016, Calcified tissue international,
E M Levine, and H Roelink, and J Turner, and T A Reh
June 1999, Journal of neurobiology,
E M Levine, and H Roelink, and J Turner, and T A Reh
January 1987, Transactions of the American Ophthalmological Society,
E M Levine, and H Roelink, and J Turner, and T A Reh
September 2018, Journal of thoracic disease,
E M Levine, and H Roelink, and J Turner, and T A Reh
January 2014, Investigative ophthalmology & visual science,
E M Levine, and H Roelink, and J Turner, and T A Reh
October 2000, Neuroreport,
E M Levine, and H Roelink, and J Turner, and T A Reh
May 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
E M Levine, and H Roelink, and J Turner, and T A Reh
August 1999, Neuroreport,
E M Levine, and H Roelink, and J Turner, and T A Reh
February 1998, Cell and tissue research,
Copied contents to your clipboard!