Producing physiologically realistic individual muscle force estimations by imposing constraints when using optimization techniques. 1997

J H Challis
Biomechanics Laboratory, Pennsylvania State University, University Park 16802-3408, USA.

Static optimization techniques have been used to estimate individual muscle forces in order to assess joint loads and muscle function. This study examined the validity of such techniques. Forces in the individual muscles, causing elbow flexion, were estimated using four different objective functions, minimizing the sum of the muscle stress either squared or cubed, and minimizing the sum of the relative muscle forces either squared or cubed. Constraints were placed on the maximum muscle forces based on physiological considerations. The resulting force estimates were compared with those from a validated muscle model that took account of the physiological properties of the muscles. The objective functions produced physiologically unrealistic muscle force estimations, unless the maximum muscle forces were constrained. By imposing constraints, individual muscle force predictions were restricted to those that were within physiologically realistic bounds. Using this procedure for sub-maximal activity resulted in some muscle activity being equal to the constraint, which, whilst possible, is still unrealistic. Therefore, by imposing constraints, the muscle forces can be kept within physiological boundaries, but the inferred recruitment is not necessarily the solution that the 'body' selects, but reflects a set of muscle forces that meet the solution to the optimization problem.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007596 Joints Also known as articulations, these are points of connection between the ends of certain separate bones, or where the borders of other bones are juxtaposed. Joint
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D004551 Elbow Joint A hinge joint connecting the FOREARM to the ARM. Elbow Joints,Joint, Elbow,Joints, Elbow
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical

Related Publications

J H Challis
October 1987, Journal of neuroscience methods,
J H Challis
December 1993, Journal of biomechanics,
J H Challis
May 2021, Attention, perception & psychophysics,
Copied contents to your clipboard!