Folding and stability of a fibronectin type III domain of human tenascin. 1997

J Clarke, and S J Hamill, and C M Johnson
Centre for Protein Engineering, MRC Centre, Hills Road, Cambridge, CB2 2QH, U.K.

The folding of an isolated fibronectin type III domain of human tenascin, a large extra-cellular matrix protein, has been characterised. The isolated module, which has no disulphide bonds, can be reversibly unfolded by chemical denaturant and temperature. Equilibrium unfolding, measured using a number of different probes, fits to a two-state transition, with consistent measures of DeltaGH2OD-N. Folding and refolding rate constants have been determined over a range of denaturant concentrations. The refolding kinetics are bi-phasic, and in the transition region the slow phase dominates refolding kinetics. Outside the transition region the folding of the fast-folding species fits to a two-state model. There is no evidence for significant accumulation of partially folded intermediates.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014508 Urea A compound formed in the liver from ammonia produced by the deamination of amino acids. It is the principal end product of protein catabolism and constitutes about one half of the total urinary solids. Basodexan,Carbamide,Carmol
D017510 Protein Folding Processes involved in the formation of TERTIARY PROTEIN STRUCTURE. Protein Folding, Globular,Folding, Globular Protein,Folding, Protein,Foldings, Globular Protein,Foldings, Protein,Globular Protein Folding,Globular Protein Foldings,Protein Foldings,Protein Foldings, Globular

Related Publications

J Clarke, and S J Hamill, and C M Johnson
March 1995, The Journal of biological chemistry,
J Clarke, and S J Hamill, and C M Johnson
October 2014, Protein engineering, design & selection : PEDS,
J Clarke, and S J Hamill, and C M Johnson
January 2008, Biotechnology progress,
J Clarke, and S J Hamill, and C M Johnson
January 2013, PloS one,
J Clarke, and S J Hamill, and C M Johnson
December 2000, Journal of endodontics,
J Clarke, and S J Hamill, and C M Johnson
January 2013, The journal of physical chemistry. B,
J Clarke, and S J Hamill, and C M Johnson
March 2007, Protein science : a publication of the Protein Society,
J Clarke, and S J Hamill, and C M Johnson
November 1992, Science (New York, N.Y.),
J Clarke, and S J Hamill, and C M Johnson
July 1997, Structure (London, England : 1993),
J Clarke, and S J Hamill, and C M Johnson
January 2003, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!