Inhibition of the voltage-dependent calcium current by extracellular ATP in hamster ventricular cardiomyocytes. 1997

F Von zur Mühlen, and B D Gonska, and H Kreuzer
Department of Cardiology, University of Göttingen, Germany.

The modulation of the high-voltage-activated calcium current (ICa) by external ATP was examined in single ventricular cardiomyocytes of the hamster using the whole-cell configuration of the patch-clamp technique. Extracellular application of ATP (0.1-100 microM) was found to inhibit ICa reversibly. The inhibition followed a slow time course (half time approximately 25 s) and was accompanied by very small changes of the holding current and no shift in the current-voltage relationship. With 100 microM ATP, peak ICa was reduced by approximately 30%. This response was not blocked by the P1 inhibitor 8-cyclopentyl-1,3-dipropylxanthine. The nonhydrolyzable ATP analogs adenosine 5'-O-(3-thiotriphosphate) and AMP-adenosine 5'-[beta,gamma-imido]triphosphate also reduced ICa. The ATP analog alpha,beta-methylene-ATP was about equipotent with ATP at 50 microM. Internal guanosine 5'-O-(3-thiotriphosphate) (200 microM) rendered the ATP-mediated inhibition of ICa poorly reversible, whereas internal guanosine 5'-O-(2-thiodiphosphate) (200-500 microM) had no effect. Holding the intracellular adenosine 3',5'-cyclic monophosphate concentration at a constant high level did not alter the ATP response. We conclude that external ATP inhibits ICa via a P2 purinergic receptor in hamster ventricular myocytes. Our results suggest the involvement of a G protein not coupled to adenylate cyclase. The inhibition of ICa by extracellular ATP might have pathophysiological relevance under conditions of myocardial injury.

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008647 Mesocricetus A genus in the order Rodentia and family Cricetidae. One species, Mesocricetus auratus or golden hamster is widely used in biomedical research. Hamsters, Golden,Hamsters, Golden Syrian,Hamsters, Syrian,Mesocricetus auratus,Syrian Golden Hamster,Syrian Hamster,Golden Hamster,Golden Hamster, Syrian,Golden Hamsters,Golden Syrian Hamsters,Hamster, Golden,Hamster, Syrian,Hamster, Syrian Golden,Syrian Hamsters
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002614 Chelating Agents Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal
D004533 Egtazic Acid A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

F Von zur Mühlen, and B D Gonska, and H Kreuzer
October 1997, Anesthesiology,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
January 1993, Advances in experimental medicine and biology,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
February 1995, The Journal of pharmacology and experimental therapeutics,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
November 1994, Neuron,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
August 1988, Science (New York, N.Y.),
F Von zur Mühlen, and B D Gonska, and H Kreuzer
April 1995, Cardiovascular research,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
January 1996, The Journal of experimental biology,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
February 1979, Nature,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
April 2003, British journal of pharmacology,
F Von zur Mühlen, and B D Gonska, and H Kreuzer
November 1990, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!