Discovery of enzyme inhibitors through combinatorial chemistry. 1997

R E Dolle
Department of Chemistry, Pharmacopeia Inc., Princeton, NJ 08540, USA.

This review serves to highlight the recent examples of combinatoric methodology as applied to the discovery and optimization of enzyme inhibitors. Early research efforts focused on the identification of polypeptides from libraries as inhibitors of proteases. As solution- and solid-phase chemistries gain in sophistication, libraries containing less peptidic structural motifs have been created. A recurring design stratagem relies on the synthesis of libraries incorporating pharmacophores with known affinity for the target enzyme. Screening of these structure-based libraries has led to the discovery of small-molecule inhibitors of both proteolytic and non-proteolytic enzymes alike. Two tables are provided listing the enzyme targeted libraries through 1996. A name, generic structure and size is given for each library citation, accompanied by the enzyme screen and the structure and potency of the most active library member.

UI MeSH Term Description Entries
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D001709 Biotechnology Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction. Biotechnologies
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015195 Drug Design The molecular designing of drugs for specific purposes (such as DNA-binding, enzyme inhibition, anti-cancer efficacy, etc.) based on knowledge of molecular properties such as activity of functional groups, molecular geometry, and electronic structure, and also on information cataloged on analogous molecules. Drug design is generally computer-assisted molecular modeling and does not include PHARMACOKINETICS, dosage analysis, or drug administration analysis. Computer-Aided Drug Design,Computerized Drug Design,Drug Modeling,Pharmaceutical Design,Computer Aided Drug Design,Computer-Aided Drug Designs,Computerized Drug Designs,Design, Pharmaceutical,Drug Design, Computer-Aided,Drug Design, Computerized,Drug Designs,Drug Modelings,Pharmaceutical Designs

Related Publications

R E Dolle
August 1998, Chemistry & biology,
R E Dolle
June 2003, Current opinion in chemical biology,
R E Dolle
July 2006, Journal of the American Chemical Society,
R E Dolle
April 2000, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
R E Dolle
April 1997, Nature biotechnology,
R E Dolle
June 2017, Current opinion in chemical biology,
R E Dolle
December 1996, Nature biotechnology,
R E Dolle
September 2010, Dalton transactions (Cambridge, England : 2003),
Copied contents to your clipboard!