Characterization of the P450 system in Göttingen minipigs. 1997

M T Skaanild, and C Friis
Department of Pharmacology and Pathobiology, Royal Veterinary and Agricultural University, Copenhagen, Denmark.

It is essential to establish the activity and regulation of the cytochrome P450 system of species selected for toxicological and pharmacological studies. The minipig has become a popular substitute for the traditional non-rodent species although little information is available on its P450 system. The total P450 and the enzyme activity of the most important drug-metabolizing isoenzymes: CYP1A2, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 were measured in liver microsomes from 4 minipigs and 8 conventional pigs of both sexes. Immunochemical levels were determined for 4 of teh isoenzymes. The total P450 activity was slightly higher in minipigs compared to conventional pigs but no sex difference was detected. CYP1A2 activity (7-ethoxyresorufin) was 4 times higher in female minipigs than in male minipigs. The activity in male minipigs was almost identical to the activity in conventional pigs. The activity of CYP2E1 (chlorzoxazone) was 4 times higher in female than in male minipigs and 2 times higher in female than in male conventional pigs. No activity of CYP2D6 (debrisoquine) and CYP2C19 (mephenytoin) could be detected. The CYP3A4 activity (testosterone) detected in minipigs was higher than the activity in conventional pigs. A weak sex difference was seen in both strains. Western blotting using anti-human CYP2E1 and CYP3A4 confirmed the results obtained in the enzyme activity assays, while only CYP1A2 correlated with the activity in the conventional strain. The total P450 enzyme activity was close to the levels reported for human beings, as were the activities of CYP2E1 and CYP3A4.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012727 Sex Characteristics Those characteristics that distinguish one SEX from the other. The primary sex characteristics are the OVARIES and TESTES and their related hormones. Secondary sex characteristics are those which are masculine or feminine but not directly related to reproduction. Gender Characteristics,Gender Differences,Gender Dimorphism,Sex Differences,Sex Dimorphism,Sexual Dichromatism,Sexual Dimorphism,Characteristic, Gender,Characteristic, Sex,Dichromatism, Sexual,Dichromatisms, Sexual,Difference, Sex,Dimorphism, Gender,Dimorphism, Sex,Dimorphism, Sexual,Gender Characteristic,Gender Difference,Gender Dimorphisms,Sex Characteristic,Sex Difference,Sex Dimorphisms,Sexual Dichromatisms,Sexual Dimorphisms
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013556 Swine, Miniature Genetically developed small pigs for use in biomedical research. There are several strains - Yucatan miniature, Sinclair miniature, and Minnesota miniature. Miniature Swine,Minipigs,Miniature Swines,Minipig,Swines, Miniature

Related Publications

M T Skaanild, and C Friis
June 2018, Toxicologic pathology,
M T Skaanild, and C Friis
June 2011, Toxicologic pathology,
M T Skaanild, and C Friis
January 2011, Journal of pharmacological and toxicological methods,
M T Skaanild, and C Friis
March 2021, Regulatory toxicology and pharmacology : RTP,
M T Skaanild, and C Friis
January 2020, International journal of toxicology,
M T Skaanild, and C Friis
January 2020, Journal of clinical and experimental hepatology,
M T Skaanild, and C Friis
December 2022, Journal of immunotoxicology,
M T Skaanild, and C Friis
February 2015, Toxicologic pathology,
Copied contents to your clipboard!