Alanine and terbutaline in the prevention of nocturnal hypoglycemia in IDDM. 1997

T Y Saleh, and P E Cryer
Division of Endocrinology, Diabetes and Metabolism, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

OBJECTIVE To test the hypothesis that because of sustained glycemic actions, bedtime administration of the glucagon-releasing amino acid alanine or the epinephrine-simulating beta2-adrenergic agonist terbutaline more effectively prevents nocturnal hypoglycemia than a conventional bedtime snack, we studied 15 patients with IDDM. METHODS On each of four occasions, the same individualized dose of NPH insulin (0.1-0.2 U/kg) was administered with either no treatment (control) or, in random sequence, oral treatment with a snack (240 ml of 2% milk plus one slice of toast, approximately 200 kcal), alanine (40 g, plus 10 g of glucose, approximately 200 kcal), or terbutaline (5.0 mg) at 2200. RESULTS During the first half of the night (2315-0300), mean plasma glucose concentrations were higher after the snack (P < 0.02), alanine plus glucose (P < 0.01), or terbutaline (P < 0.001), compared with no treatment. During the second half of the night, mean plasma glucose levels were no different from control values (73 +/- 5 mg/dl, 4.1 +/- 0.3 mmol/l) after the snack (73 +/- 7 mg/dl, 4.1 +/- 0.4 mmol/l), tended to be higher after alanine plus glucose (96 +/- 16 mg/dl, 5.3 +/- 0.9 mmol/l), and were significantly higher after terbutaline (124 +/- 15 mg/dl, 6.9 +/- 0.8 mmol/l, P < 0.01). Nocturnal plasma glucose levels of 40 mg/dl (2.2 mmol/l) or less (which were treated with intravenous glucose) occurred on 13 occasions in seven patients in the control arm and 10 occasions in six patients in the snack arm (not significantly different from the control arm), but on only 1 occasion in the alanine-plus-glucose arm (P < 0.02) and the terbutaline arm (P < 0.02). CONCLUSIONS In patients with IDDM given an evening dose of NPH insulin, a conventional bedtime snack exerts an inconsistent glycemic effect only during the first half of the night, and bedtime administration of the glucagon-releasing amino acid alanine or the epinephrine-simulating beta2-adrenergic agonist terbutaline more effectively prevents nocturnal hypoglycemia than a conventional bedtime snack.

UI MeSH Term Description Entries
D007003 Hypoglycemia A syndrome of abnormally low BLOOD GLUCOSE level. Clinical hypoglycemia has diverse etiologies. Severe hypoglycemia eventually lead to glucose deprivation of the CENTRAL NERVOUS SYSTEM resulting in HUNGER; SWEATING; PARESTHESIA; impaired mental function; SEIZURES; COMA; and even DEATH. Fasting Hypoglycemia,Postabsorptive Hypoglycemia,Postprandial Hypoglycemia,Reactive Hypoglycemia,Hypoglycemia, Fasting,Hypoglycemia, Postabsorptive,Hypoglycemia, Postprandial,Hypoglycemia, Reactive
D007004 Hypoglycemic Agents Substances which lower blood glucose levels. Antidiabetic,Antidiabetic Agent,Antidiabetic Drug,Antidiabetics,Antihyperglycemic,Antihyperglycemic Agent,Hypoglycemic,Hypoglycemic Agent,Hypoglycemic Drug,Antidiabetic Agents,Antidiabetic Drugs,Antihyperglycemic Agents,Antihyperglycemics,Hypoglycemic Drugs,Hypoglycemic Effect,Hypoglycemic Effects,Hypoglycemics,Agent, Antidiabetic,Agent, Antihyperglycemic,Agent, Hypoglycemic,Agents, Antidiabetic,Agents, Antihyperglycemic,Agents, Hypoglycemic,Drug, Antidiabetic,Drug, Hypoglycemic,Drugs, Antidiabetic,Drugs, Hypoglycemic,Effect, Hypoglycemic,Effects, Hypoglycemic
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic

Related Publications

T Y Saleh, and P E Cryer
August 1993, Diabetes care,
T Y Saleh, and P E Cryer
December 2008, Diabetes care,
T Y Saleh, and P E Cryer
August 1993, Diabetes care,
T Y Saleh, and P E Cryer
February 1992, Sleep,
T Y Saleh, and P E Cryer
September 1988, Diabetes care,
T Y Saleh, and P E Cryer
January 1996, Journees annuelles de diabetologie de l'Hotel-Dieu,
T Y Saleh, and P E Cryer
December 1993, Diabetes,
T Y Saleh, and P E Cryer
July 1990, Diabetes care,
Copied contents to your clipboard!