Vesicular transport of Charcot-Leyden crystal protein in f-Met peptide-stimulated human basophils. 1997

A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass. 02215, USA.

The ultrastructural localization of Charcot-Leyden crystal (CLC) protein during f-Met-peptide-induced degranulation of human basophils was analyzed at multiple times after stimulation. In this secretion model, piecemeal and anaphylactic degranulation occurred sequentially in stimulated cells and were followed by reconstitution of granule contents. This analysis showed that granule number and alteration and location of gold-labeled, formed CLCs changed over time. CLCs were extruded from granules and remained attached to plasma membranes early after stimulation. At later times, similar structures reappeared in granules in quantity. Smooth-membrane-bound vesicles, analyzed by number, by visible particle contents (or lack of contents) and by gold labeling for CLC protein, showed that empty vesicles increased at the earliest time sampled (0 time) and plunged thereafter in actively extruding and completely degranulated cells. Vesicles containing granule particles were elevated initially at 10 s and at later times. Gold-labeled CLC-protein-containing vesicles were of either empty or particle-filled varieties, and both types were involved with CLC protein transport out of cells at early times and into cells at later times as basophils recovered. Thus, vesicle transport of CLC protein is a mechanism for producing piecemeal degranulation and endocytotic recovery of released CLC protein from human basophils. This vesicular shuttle may be an effector mechanism for widespread piecemeal losses from granules in basophils in inflammatory sites in vivo in human disease.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008245 Lysophospholipase An enzyme that catalyzes the hydrolysis of a single fatty acid ester bond in lysoglycerophosphatidates with the formation of glyceryl phosphatidates and a fatty acid. EC 3.1.1.5. Lecithinase B,Lysolecithinase,Phospholipase B,Lysolecithin-Lysolecithin Acyltransferase,Lysophospholipase A,Lysophospholipase A1,Lysophospholipase C,Lysophospholipase L2,Acyltransferase, Lysolecithin-Lysolecithin,L2, Lysophospholipase,Lysolecithin Lysolecithin Acyltransferase
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009240 N-Formylmethionine Leucyl-Phenylalanine A formylated tripeptide originally isolated from bacterial filtrates that is positively chemotactic to polymorphonuclear leucocytes, and causes them to release lysosomal enzymes and become metabolically activated. F-Met-Leu-Phe,N-Formyl-Methionyl-Leucyl-Phenylalanine,Formylmet-Leu-Phe,Formylmethionyl Peptide,Formylmethionyl-Leucyl-Phenylalanine,Formylmethionylleucylphenylalanine,N-Formylated Peptide,N-formylmethionyl-leucyl-phenylalanine,fMet-Leu-Phe,F Met Leu Phe,Formylmet Leu Phe,Formylmethionyl Leucyl Phenylalanine,Leucyl-Phenylalanine, N-Formylmethionine,N Formyl Methionyl Leucyl Phenylalanine,N Formylated Peptide,N Formylmethionine Leucyl Phenylalanine,N formylmethionyl leucyl phenylalanine,Peptide, Formylmethionyl,Peptide, N-Formylated,fMet Leu Phe
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D006023 Glycoproteins Conjugated protein-carbohydrate compounds including MUCINS; mucoid, and AMYLOID glycoproteins. C-Glycosylated Proteins,Glycosylated Protein,Glycosylated Proteins,N-Glycosylated Proteins,O-Glycosylated Proteins,Glycoprotein,Neoglycoproteins,Protein, Glycosylated,Proteins, C-Glycosylated,Proteins, Glycosylated,Proteins, N-Glycosylated,Proteins, O-Glycosylated
D006046 Gold A yellow metallic element with the atomic symbol Au, atomic number 79, and atomic weight 197. It is used in jewelry, goldplating of other metals, as currency, and in dental restoration. Many of its clinical applications, such as ANTIRHEUMATIC AGENTS, are in the form of its salts.
D006636 Histamine Release The secretion of histamine from mast cell and basophil granules by exocytosis. This can be initiated by a number of factors, all of which involve binding of IgE, cross-linked by antigen, to the mast cell or basophil's Fc receptors. Once released, histamine binds to a number of different target cell receptors and exerts a wide variety of effects. Histamine Liberation,Histamine Liberations,Histamine Releases
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
January 1997, European journal of haematology,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
April 1992, Journal of leukocyte biology,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
June 1982, The Journal of experimental medicine,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
April 1989, Laboratory investigation; a journal of technical methods and pathology,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
December 1984, The Journal of biological chemistry,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
December 1981, American journal of ophthalmology,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
January 2005, Chemical immunology and allergy,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
April 1993, Acta medica Okayama,
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
February 1986, Journal of immunology (Baltimore, Md. : 1950),
A M Dvorak, and D W MacGlashan, and J A Warner, and L Letourneau, and E S Morgan, and L M Lichtenstein, and S J Ackerman
November 1980, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!