Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes. 1997

R Pagán, and S Condón, and F J Sala
Departamento PACA, Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.

The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008089 Listeria monocytogenes A species of gram-positive, rod-shaped bacteria widely distributed in nature. It has been isolated from sewage, soil, silage, and from feces of healthy animals and man. Infection with this bacterium leads to encephalitis, meningitis, endocarditis, and abortion.
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D003470 Culture Media Any liquid or solid preparation made specifically for the growth, storage, or transport of microorganisms or other types of cells. The variety of media that exist allow for the culturing of specific microorganisms and cell types, such as differential media, selective media, test media, and defined media. Solid media consist of liquid media that have been solidified with an agent such as AGAR or GELATIN. Media, Culture
D006361 Heating The application of heat to raise the temperature of the environment, ambient or local, or the systems for accomplishing this effect. It is distinguished from HEAT, the physical property and principle of physics.
D012965 Sodium Chloride A ubiquitous sodium salt that is commonly used to season food. Sodium Chloride, (22)Na,Sodium Chloride, (24)NaCl
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015169 Colony Count, Microbial Enumeration by direct count of viable, isolated bacterial, archaeal, or fungal CELLS or SPORES capable of growth on solid CULTURE MEDIA. The method is used routinely by environmental microbiologists for quantifying organisms in AIR; FOOD; and WATER; by clinicians for measuring patients' microbial load; and in antimicrobial drug testing. Agar Dilution Count,Colony-Forming Units Assay, Microbial,Fungal Count,Pour Plate Count,Spore Count,Spread Plate Count,Streak Plate Count,Colony Forming Units Assay, Microbial,Colony Forming Units Assays, Microbial,Agar Dilution Counts,Colony Counts, Microbial,Count, Agar Dilution,Count, Fungal,Count, Microbial Colony,Count, Pour Plate,Count, Spore,Count, Spread Plate,Count, Streak Plate,Counts, Agar Dilution,Counts, Fungal,Counts, Microbial Colony,Counts, Pour Plate,Counts, Spore,Counts, Spread Plate,Counts, Streak Plate,Dilution Count, Agar,Dilution Counts, Agar,Fungal Counts,Microbial Colony Count,Microbial Colony Counts,Pour Plate Counts,Spore Counts,Spread Plate Counts,Streak Plate Counts
D018869 Heat-Shock Response A sequence of responses that occur when an organism is exposed to excessive heat. In humans, an increase in skin temperature triggers muscle relaxation, sweating, and vasodilation. Heat-Shock Reaction,Heat Shock,Heat Shock Stress,Heat Stress,Heat-Stress Reaction,Heat-Stress Response,Heat Shock Reaction,Heat Shock Response,Heat Shock Stresses,Heat Shocks,Heat Stress Reaction,Heat Stress Response,Heat Stresses,Heat-Shock Reactions,Heat-Shock Responses,Heat-Stress Reactions,Heat-Stress Responses,Shock, Heat,Stress, Heat,Stress, Heat Shock

Related Publications

R Pagán, and S Condón, and F J Sala
October 1990, Applied and environmental microbiology,
R Pagán, and S Condón, and F J Sala
February 2008, Journal of food protection,
R Pagán, and S Condón, and F J Sala
June 1990, Applied and environmental microbiology,
R Pagán, and S Condón, and F J Sala
January 1989, Infection and immunity,
R Pagán, and S Condón, and F J Sala
November 1990, Journal of food protection,
R Pagán, and S Condón, and F J Sala
June 1992, Applied and environmental microbiology,
R Pagán, and S Condón, and F J Sala
January 1968, Acta microbiologica Polonica,
R Pagán, and S Condón, and F J Sala
February 1992, Journal of food protection,
Copied contents to your clipboard!