Oxidative stress mediates monocrotaline-induced alterations in tenascin expression in pulmonary artery endothelial cells. 1997

S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
Division of Pharmacology and Experimental Therapeutics, University of Kentucky, Lexington 40536, USA.

Oxidative stress may be involved in monocrotaline (MCT)-induced endothelial cell injury and upregulation of extracellular matrix proteins in the pulmonary vasculature. To test this hypothesis, cytotoxicity, expression and distribution of tenascin (TN) as well as cellular oxidation were determined in porcine pulmonary artery endothelial cells (PAECs) exposed to MCT and/or to an oxygen radical scavenger, dimethylthiourea (DMTU). Relative to controls, treatment with 2.5 mM MCT for 24 hr produced cytotoxicity as evidenced by changes in cellular morphology, cell detachment, hypertrophy, reduction in cellular proliferation and severe cytoplasmic vacuolization. Parallel studies showed that MCT markedly altered the expression and distribution of TN in PAEC as determined by immunocytochemistry. Western analysis showed that MCT increased cellular TN content and promoted the appearance of an additional, smaller TN isoform. Northern analysis demonstrated an increase in the steady-state level of TN-specific mRNA in response to MCT treatment. Exposure to MCT also increased the synthesis of cell-associated and media-associated TN as determined by immunoprecipitation. In addition, MCT increased the intensity of cellular oxidative stress as measured by 2,7-dichlorofluorescein fluorescence. Co-treatment with DMTU prevented MCT-induced cytotoxicity, alterations in TN distribution and content, and reduced the increase in DCF fluorescence. These results suggest that MCT-induced cytotoxicity and upregulation of TN are mediated, at least in part, by induction of cellular oxidative stress.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D011651 Pulmonary Artery The short wide vessel arising from the conus arteriosus of the right ventricle and conveying unaerated blood to the lungs. Arteries, Pulmonary,Artery, Pulmonary,Pulmonary Arteries
D011652 Pulmonary Circulation The circulation of the BLOOD through the LUNGS. Pulmonary Blood Flow,Respiratory Circulation,Circulation, Pulmonary,Circulation, Respiratory,Blood Flow, Pulmonary,Flow, Pulmonary Blood,Pulmonary Blood Flows
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013552 Swine Any of various animals that constitute the family Suidae and comprise stout-bodied, short-legged omnivorous mammals with thick skin, usually covered with coarse bristles, a rather long mobile snout, and small tail. Included are the genera Babyrousa, Phacochoerus (wart hogs), and Sus, the latter containing the domestic pig (see SUS SCROFA). Phacochoerus,Pigs,Suidae,Warthogs,Wart Hogs,Hog, Wart,Hogs, Wart,Wart Hog
D013890 Thiourea A photographic fixative used also in the manufacture of resins. According to the Fourth Annual Report on Carcinogens (NTP 85-002, 1985), this substance may reasonably be anticipated to be a carcinogen (Merck Index, 9th ed). Many of its derivatives are ANTITHYROID AGENTS and/or FREE RADICAL SCAVENGERS.
D016166 Free Radical Scavengers Substances that eliminate free radicals. Among other effects, they protect PANCREATIC ISLETS against damage by CYTOKINES and prevent myocardial and pulmonary REPERFUSION INJURY. Free Radical Scavenger,Radical Scavenger, Free,Scavenger, Free Radical,Scavengers, Free Radical

Related Publications

S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
February 2013, Free radical biology & medicine,
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
August 1998, Toxicology and applied pharmacology,
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
August 2003, American journal of physiology. Heart and circulatory physiology,
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
September 2000, The Journal of biological chemistry,
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
October 1993, British journal of pharmacology,
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
August 2003, Sheng li xue bao : [Acta physiologica Sinica],
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
March 2023, Microvascular research,
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
May 1984, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
December 2005, Apoptosis : an international journal on programmed cell death,
S M Aziz, and M Toborek, and B Hennig, and M P Mattson, and H Guo, and D W Lipke
December 2003, Antioxidants & redox signaling,
Copied contents to your clipboard!