Adenovirus E1A inhibits cardiac myocyte-specific gene expression through its amino terminus. 1997

N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
Molecular Cardiology Laboratory, SRI International, Menlo Park, California 94125, USA.

Adenovirus E1A oncoproteins inhibit muscle-specific gene expression and myogenic differentiation by suppressing the transcriptional activating functions of basic helix-loop-helix proteins. As one approach to identifying cardiac-specific gene regulatory proteins, we analyzed the functional regions of E1A proteins that are required for muscle gene repression in cardiac cells. Myocyte-specific promoters, including the alpha-actins and alpha-myosin heavy chain, were selectively and potently inhibited (>90%) by E1A, while the ubiquitously expressed beta-actin promoter was only partially ( approximately 30%) repressed; endogenous gene expression was also affected. Distinct E1A protein binding sites mediated repression of muscle-specific and ubiquitous actin promoters. E1A-mediated inhibition of beta-actin required both an intact binding site for the tumor repressor proteins pRb and p107 and a second E1A domain (residues 15-35). In contrast, cardiac-specific promoter repression required the E1A amino-terminal residues 2-36. The proximal skeletal actin promoter (3' to base pair -153) was a target for repression by E1A. Although E1A binding to p300 was not required for inhibition of either promoter, co-expression of p300 partially reversed E1A-mediated transcriptional repression. We conclude that cardiac-specific and general promoter inhibition by E1A occurs by distinct mechanisms and that cardiac-specific gene expression is modulated by cellular factors interacting with the E1A p300/CBP-binding domain.

UI MeSH Term Description Entries
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000199 Actins Filamentous proteins that are the main constituent of the thin filaments of muscle fibers. The filaments (known also as filamentous or F-actin) can be dissociated into their globular subunits; each subunit is composed of a single polypeptide 375 amino acids long. This is known as globular or G-actin. In conjunction with MYOSINS, actin is responsible for the contraction and relaxation of muscle. F-Actin,G-Actin,Actin,Isoactin,N-Actin,alpha-Actin,alpha-Isoactin,beta-Actin,gamma-Actin,F Actin,G Actin,N Actin,alpha Actin,alpha Isoactin,beta Actin,gamma Actin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017500 Adenovirus E1A Proteins Proteins transcribed from the E1A genome region of ADENOVIRUSES which are involved in positive regulation of transcription of the early genes of host infection. Adenovirus E1A Protein Domain 3,Adenovirus E1A Protein,E1A Protein, Adenovirus,E1A Proteins, Adenovirus
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
March 1986, Journal of virology,
N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
January 1990, Oncogene,
N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
October 2009, The Journal of biological chemistry,
N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
December 2017, Viruses,
N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
July 1995, The EMBO journal,
N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
April 1996, The Journal of biological chemistry,
N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
June 1988, Biochemistry and cell biology = Biochimie et biologie cellulaire,
N H Bishopric, and G Q Zeng, and B Sato, and K A Webster
February 1994, Biochemical and biophysical research communications,
Copied contents to your clipboard!