Functional protein prenylation is required for the brefeldin A-dependent retrograde transport from the Golgi apparatus to the endoplasmic reticulum. 1997

N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
Department of Molecular Genetics, University and Biocenter Vienna, A-1030 Vienna, Austria. ivessa@mol.univie.ac.at

In cells exposed to brefeldin A (BFA), enzymes of the Golgi apparatus are redistributed to the endoplasmic reticulum (ER) by retrograde membrane flow, where they may cause modifications on resident ER proteins. We have used a truncated form of the rough ER-specific type I transmembrane glycoprotein ribophorin I as a probe to detect Golgi glycosyltransferases relocated to the ER in a BFA-dependent fashion. This polypeptide (RI332) comprises the 332 amino-terminal amino acids of ribophorin I and behaves like a luminal ER protein when expressed in HeLa cells. Upon treatment of the cells with BFA, RI332 becomes quantitatively O-glycosylated by Golgi glycosyltransferases that are transported back to the ER. Here we demonstrate that pretreatment of the cells with lovastatin, an inhibitor of HMG-CoA reductase, abrogates this modification and that mevalonate, the product formed in the step inhibited by the drug, is able to counteract the effect of lovastatin. We also show by immunofluorescence using mannosidase II as a Golgi marker that the BFA-induced retrograde transport of Golgi enzymes is blocked by lovastatin, although electron microscopy indicates that BFA causes disassembly of the Golgi apparatus into swollen vesicles and tubules. Our observations support the role of a prenylated protein, such as the geranylgeranylated small G protein Rab6, in the retrograde transport from the Golgi apparatus to the ER, since lovastatin acts by inhibiting its prenylation.

UI MeSH Term Description Entries
D008148 Lovastatin A fungal metabolite isolated from cultures of Aspergillus terreus. The compound is a potent anticholesteremic agent. It inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase (HYDROXYMETHYLGLUTARYL COA REDUCTASES), which is the rate-limiting enzyme in cholesterol biosynthesis. It also stimulates the production of low-density lipoprotein receptors in the liver. Lovastatin, 1 alpha-Isomer,Mevinolin,6-Methylcompactin,Lovastatin, (1 alpha(S*))-Isomer,MK-803,Mevacor,Monacolin K,1 alpha-Isomer Lovastatin,6 Methylcompactin,Lovastatin, 1 alpha Isomer,MK 803,MK803,alpha-Isomer Lovastatin, 1
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003517 Cyclopentanes A group of alicyclic hydrocarbons with the general formula R-C5H9. Cyclopentadiene,Cyclopentadienes,Cyclopentene,Cyclopentenes,Cyclopentane
D004721 Endoplasmic Reticulum A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed) Ergastoplasm,Reticulum, Endoplasmic
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D017368 Protein Prenylation A post-translational modification of proteins by the attachment of an isoprenoid to the C-terminal cysteine residue. The isoprenoids used, farnesyl diphosphate or geranylgeranyl diphosphate, are derived from the same biochemical pathway that produces cholesterol. Post-Translational Isoprenylation,Protein Isoprenylation,Protein Farnesylation,Protein Geranylgeranylation,Protein Polyisoprenylation,Farnesylation, Protein,Geranylgeranylation, Protein,Polyisoprenylation, Protein,Prenylation, Protein

Related Publications

N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
October 1998, Journal of cell science,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
September 1988, The Journal of cell biology,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
February 2002, Molecular and cellular biology,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
August 1998, The Biochemical journal,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
June 1990, BioEssays : news and reviews in molecular, cellular and developmental biology,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
August 2003, Proceedings of the National Academy of Sciences of the United States of America,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
April 1997, The Journal of cell biology,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
December 1989, The Journal of cell biology,
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
October 2011, Traffic (Copenhagen, Denmark),
N E Ivessa, and D Gravotta, and C De Lemos-Chiarandini, and G Kreibich
November 2000, The Plant cell,
Copied contents to your clipboard!