Regulation of mitogenesis by kinins in arterial smooth muscle cells. 1997

B S Dixon, and M J Dennis
Veterans Affairs Medical Center, Iowa City, Iowa, USA.

Recent evidence suggests that bradykinin (BK) plays a role in regulating neointimal formation after vascular injury. The present study examined the mechanism whereby BK regulates platelet-derived growth factor (PDGF) AB-induced mitogenesis in smooth muscle cells from rat mesenteric artery. BK, but not other activators of phosphoinositidase C (e.g., angiotensin II), inhibited PDGF-stimulated mitogenesis. The B1 receptor agonist des-Arg9-BK (DABK) was more potent than the B2 agonist BK; smaller BK fragments had no activity. In studies in which the B2 receptor antagonist HOE-140 {D-Arg0[Hyp3,beta-(2-thienyl)-Ala5,D-Tic7,Oic 8]BK} and the B1 receptor antagonist DHOE [[D-Arg0,Hyp3,beta-(2-thienyl)-Ala5,D-Tic7,Oi c8,des-Arg9]BK] were used, both receptors independently mediated inhibition of PDGF-induced mitogenesis. There was no evidence for metabolism of BK to DABK. The rank potency for activating phosphoinositidase C and increasing intracellular Ca2+ (BK > DABK) was opposite that for inhibiting mitogenesis (DABK > BK). Inhibition of cyclooxygenase did not prevent the kinin-mediated inhibition. Kinetic analysis of the cell cycle effects of kinins on PDGF-stimulated mitogenesis revealed that continuous exposure to DABK or BK was inhibitory even when added shortly before the cells initiated DNA synthesis (S phase). However, short-term exposure (5-60 min) to DABK or BK was inhibitory only when added after exposure to PDGF. These data suggest that the B1 and B2 receptors potently inhibited PDGF-stimulated mitogenesis and proliferation by activating an alternative signal transduction cascade not involving phosphoinositidase C or prostaglandins. The inhibition occurred at a point late in progression of the cell cycle from G1 to S and was dependent on the presence of kinins after exposure to PDGF.

UI MeSH Term Description Entries
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010727 Phosphoric Diester Hydrolases A class of enzymes that catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. EC 3.1.4. Phosphodiesterase,Phosphodiesterases,Hydrolases, Phosphoric Diester
D010982 Platelet-Derived Growth Factor Mitogenic peptide growth hormone carried in the alpha-granules of platelets. It is released when platelets adhere to traumatized tissues. Connective tissue cells near the traumatized region respond by initiating the process of replication. Platelet Derived Growth Factor,Factor, Platelet-Derived Growth,Growth Factor, Platelet-Derived
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg
D002339 Carotid Arteries Either of the two principal arteries on both sides of the neck that supply blood to the head and neck; each divides into two branches, the internal carotid artery and the external carotid artery. Arteries, Carotid,Artery, Carotid,Carotid Artery
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

B S Dixon, and M J Dennis
February 1990, The American journal of physiology,
B S Dixon, and M J Dennis
March 2020, Journal of molecular and cellular cardiology,
B S Dixon, and M J Dennis
March 1994, American journal of respiratory cell and molecular biology,
B S Dixon, and M J Dennis
August 1993, Nihon rinsho. Japanese journal of clinical medicine,
B S Dixon, and M J Dennis
May 2001, American journal of physiology. Lung cellular and molecular physiology,
B S Dixon, and M J Dennis
January 1997, Agents and actions. Supplements,
B S Dixon, and M J Dennis
January 1997, Agents and actions. Supplements,
B S Dixon, and M J Dennis
February 1986, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!