Differential effects of lipoic acid stereoisomers on glucose metabolism in insulin-resistant skeletal muscle. 1997

R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
Department of Physiology, University of Arizona, Tucson 85721-0093, USA.

The racemic mixture of the antioxidant alpha-lipoic acid (ALA) enhances insulin-stimulated glucose metabolism in insulin-resistant humans and animals. We determined the individual effects of the pure R-(+) and S-(-) enantiomers of ALA on glucose metabolism in skeletal muscle of an animal model of insulin resistance, hyperinsulinemia, and dyslipidemia: the obese Zucker (fa/fa) rat. Obese rats were treated intraperitoneally acutely (100 mg/kg body wt for 1 h) or chronically [10 days with 30 mg/kg of R-(+)-ALA or 50 mg/kg of S-(-)-ALA]. Glucose transport [2-deoxyglucose (2-DG) uptake], glycogen synthesis, and glucose oxidation were determined in the epitrochlearis muscles in the absence or presence of insulin (13.3 nM). Acutely, R-(+)-ALA increased insulin-mediated 2-DG-uptake by 64% (P < 0.05), whereas S-(-)-ALA had no significant effect. Although chronic R-(+)-ALA treatment significantly reduced plasma insulin (17%) and free fatty acids (FFA; 35%) relative to vehicle-treated obese animals, S-(-)-ALA treatment further increased insulin (15%) and had no effect on FFA. Insulin-stimulated 2-DG uptake was increased by 65% by chronic R-(+)-ALA treatment, whereas S-(-)-ALA administration resulted in only a 29% improvement. Chronic R-(+)-ALA treatment elicited a 26% increase in insulin-stimulated glycogen synthesis and a 33% enhancement of insulin-stimulated glucose oxidation. No significant increase in these parameters was observed after S-(-)-ALA treatment. Glucose transporter (GLUT-4) protein was unchanged after chronic R-(+)-ALA treatment but was reduced to 81 +/- 6% of obese control with S-(-)-ALA treatment. Therefore, chronic parenteral treatment with the antioxidant ALA enhances insulin-stimulated glucose transport and non-oxidative and oxidative glucose metabolism in insulin-resistant rat skeletal muscle, with the R-(+) enantiomer being much more effective than the S-(-) enantiomer.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007333 Insulin Resistance Diminished effectiveness of INSULIN in lowering blood sugar levels: requiring the use of 200 units or more of insulin per day to prevent HYPERGLYCEMIA or KETOSIS. Insulin Sensitivity,Resistance, Insulin,Sensitivity, Insulin
D008063 Thioctic Acid An octanoic acid bridged with two sulfurs so that it is sometimes also called a pentanoic acid in some naming schemes. It is biosynthesized by cleavage of LINOLEIC ACID and is a coenzyme of oxoglutarate dehydrogenase (KETOGLUTARATE DEHYDROGENASE COMPLEX). It is used in DIETARY SUPPLEMENTS. Lipoic Acid,Alpha-Lipogamma,Alpha-Lipon Stada,Alpha-Liponsaure Sofotec,Alpha-Lippon AL,Alphaflam,Azulipont,Fenint,Juthiac,Liponsaure-ratiopharm,MTW-Alphaliponsaure,Neurium,Pleomix-Alpha,Pleomix-Alpha N,Thioctacid,Thioctacide T,Thiogamma Injekt,Thiogamma oral,Tromlipon,Verla-Lipon,alpha-Lipoic Acid,alpha-Liponaure Heumann,alpha-Liponsaure von ct,alpha-Vibolex,biomo-lipon,duralipon,espa-lipon,Acid, alpha-Lipoic,Alpha Lipogamma,Alpha Lipon Stada,Alpha Liponsaure Sofotec,Alpha Lippon AL,AlphaLipogamma,AlphaLipon Stada,AlphaLiponsaure Sofotec,AlphaLippon AL,Injekt, Thiogamma,Liponsaure ratiopharm,Liponsaureratiopharm,MTW Alphaliponsaure,MTWAlphaliponsaure,Pleomix Alpha,Pleomix Alpha N,PleomixAlpha,PleomixAlpha N,Verla Lipon,VerlaLipon,alpha Lipoic Acid,alpha Liponaure Heumann,alpha Liponsaure von ct,alpha Vibolex,alphaLiponaure Heumann,alphaLiponsaure von ct,alphaVibolex,biomo lipon,biomolipon,espa lipon,espalipon
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D011924 Rats, Zucker Two populations of Zucker rats have been cited in research--the "fatty" or obese and the lean. The "fatty" rat (Rattus norvegicus) appeared as a spontaneous mutant. The obese condition appears to be due to a single recessive gene. Zucker Rat,Zucker Rats,Rat, Zucker
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005260 Female Females

Related Publications

R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
January 1994, Diabetes,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
January 2004, Metabolism: clinical and experimental,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
May 1996, Metabolism: clinical and experimental,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
June 2019, Phytomedicine : international journal of phytotherapy and phytopharmacology,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
July 1989, Clinical science (London, England : 1979),
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
November 2018, European journal of pharmacology,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
January 2007, Cell biochemistry and biophysics,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
April 2016, Hormone molecular biology and clinical investigation,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
February 1998, Molecular genetics and metabolism,
R S Streeper, and E J Henriksen, and S Jacob, and J Y Hokama, and D L Fogt, and H J Tritschler
September 2005, The American journal of clinical nutrition,
Copied contents to your clipboard!