The Saccharomyces cerevisiae acetyl-coenzyme A synthetase encoded by the ACS1 gene, but not the ACS2-encoded enzyme, is subject to glucose catabolite inactivation. 1997

P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands.

In Saccharomyces cerevisiae, the structural genes ACS1 and ACS2 each encode an isoenzyme of acetyl-CoA synthetase (ACS; EC 6.2.1.1). Involvement of glucose catabolite repression in regulation of the two isoenzymes was investigated by following ACS activity after glucose pulses (100 mM) to ethanol-limited chemostat cultures. In wild-type S. cerevisiae and in an isogenic strain in which ACS2 had been disrupted, ACS activity decreased after a glucose pulse. No such inactivation was observed in a strain in which ACS1 was disrupted. Western blots demonstrated that the ACS1 product, but not the ACS2 product, was degraded after a glucose pulse. Inactivation kinetics of the ACS1 product resembled those of isocitrate lyase.

UI MeSH Term Description Entries
D007522 Isocitrate Lyase A key enzyme in the glyoxylate cycle. It catalyzes the conversion of isocitrate to succinate and glyoxylate. EC 4.1.3.1. Isocitrase,Isocitratase,Lyase, Isocitrate
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006597 Fructose-Bisphosphatase An enzyme that catalyzes the conversion of D-fructose 1,6-bisphosphate and water to D-fructose 6-phosphate and orthophosphate. EC 3.1.3.11. Fructose-1,6-Bisphosphatase,Fructose-1,6-Diphosphatase,Fructosediphosphatase,Hexosediphosphatase,D-Fructose-1,6-Bisphosphate 1-Phosphohydrolase,FDPase,Fructose-1,6-Biphosphatase,1-Phosphohydrolase, D-Fructose-1,6-Bisphosphate,D Fructose 1,6 Bisphosphate 1 Phosphohydrolase,Fructose 1,6 Biphosphatase,Fructose 1,6 Bisphosphatase,Fructose 1,6 Diphosphatase,Fructose Bisphosphatase
D000106 Acetate-CoA Ligase An enzyme that catalyzes the formation of CoA derivatives from ATP, acetate, and CoA to form AMP, pyrophosphate, and acetyl CoA. It acts also on propionates and acrylates. EC 6.2.1.1. Acetate Thiokinase,Acetyl Activating Enzyme,Acetyl CoA Synthetase,Acetothiokinase,Acetyl Coenzyme A Synthetase,Acetate CoA Ligase,Activating Enzyme, Acetyl,CoA Synthetase, Acetyl,Enzyme, Acetyl Activating,Ligase, Acetate-CoA,Synthetase, Acetyl CoA,Thiokinase, Acetate
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
August 1995, European journal of biochemistry,
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
August 1995, Gene,
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
April 1993, Yeast (Chichester, England),
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
January 2004, Current genetics,
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
December 1992, Yeast (Chichester, England),
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
February 1986, Journal of general microbiology,
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
January 1997, Molecular & general genetics : MGG,
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
January 2010, Molecular and cellular biochemistry,
P de Jong-Gubbels, and M A van den Berg, and H Y Steensma, and J P van Dijken, and J T Pronk
April 2000, Drug metabolism and disposition: the biological fate of chemicals,
Copied contents to your clipboard!